Linxin Yin;Yingzhao Li;Xiaoyi Zhang;Xiongfei Zhai;Guojun Han
{"title":"An Efficient Dynamic Threshold Voltage Detection Scheme for Improving 3-D NAND Flash Reliability","authors":"Linxin Yin;Yingzhao Li;Xiaoyi Zhang;Xiongfei Zhai;Guojun Han","doi":"10.1109/TDMR.2024.3453329","DOIUrl":null,"url":null,"abstract":"With high storage density and large capacity, three-dimensional (3D) NAND flash utilizing multi-level storage technology has become the mainstream storage medium. Furthermore, by storing multiple bits in each flash cell, 3D NAND flash memory can achieve much larger storage capacity. However, the threshold voltage distribution in 3D NAND flash memory tends to shift after repeated program/erase and long retention time, leading to more detection error when adopting conventional fixed read reference voltage (RRV). To address this issue, in this work we investigate error characteristics of 3D floating-gate (FG) and charge-trap (CT) NAND flash memory, including the reliability variations of different layers and pages, and threshold voltage shifting. We propose an efficient dynamic threshold voltage detection (EDTVD) scheme by exploiting the error characteristics and the features of the data writing process of NAND flash to optimize RRV. Based on the Nanocycler test platform, the test results show that our proposed scheme can significantly reduce raw bit error rates (RBER) during reading processes and the step count is relatively low. The RBER of the EDTVD scheme is almost equal to the optimal read scheme, and the number of step count is close to 3 fixed-step read scheme.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 4","pages":"529-543"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10663438/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With high storage density and large capacity, three-dimensional (3D) NAND flash utilizing multi-level storage technology has become the mainstream storage medium. Furthermore, by storing multiple bits in each flash cell, 3D NAND flash memory can achieve much larger storage capacity. However, the threshold voltage distribution in 3D NAND flash memory tends to shift after repeated program/erase and long retention time, leading to more detection error when adopting conventional fixed read reference voltage (RRV). To address this issue, in this work we investigate error characteristics of 3D floating-gate (FG) and charge-trap (CT) NAND flash memory, including the reliability variations of different layers and pages, and threshold voltage shifting. We propose an efficient dynamic threshold voltage detection (EDTVD) scheme by exploiting the error characteristics and the features of the data writing process of NAND flash to optimize RRV. Based on the Nanocycler test platform, the test results show that our proposed scheme can significantly reduce raw bit error rates (RBER) during reading processes and the step count is relatively low. The RBER of the EDTVD scheme is almost equal to the optimal read scheme, and the number of step count is close to 3 fixed-step read scheme.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.