Chemical-motif characterization of short-range order with E(3)-equivariant graph neural networks

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Killian Sheriff, Yifan Cao, Rodrigo Freitas
{"title":"Chemical-motif characterization of short-range order with E(3)-equivariant graph neural networks","authors":"Killian Sheriff, Yifan Cao, Rodrigo Freitas","doi":"10.1038/s41524-024-01393-5","DOIUrl":null,"url":null,"abstract":"<p>Crystalline materials have atomic-scale fluctuations in their chemical composition that modulate various mesoscale properties. Establishing chemistry–microstructure relationships in such materials requires proper characterization of these chemical fluctuations. Yet, current characterization approaches (e.g., Warren–Cowley parameters) make only partial use of the complete chemical and structural information contained in local chemical motifs. Here we introduce a framework based on E(3)-equivariant graph neural networks that is capable of completely identifying chemical motifs in arbitrary crystalline structures with any number of chemical elements. This approach naturally leads to a proper information-theoretic measure for quantifying chemical short-range order (SRO) in chemically complex materials and a reduced representation of the chemical motif space. Our framework enables the correlation of any per-atom property with their corresponding local chemical motif, thereby enabling the exploration of structure–property relationships in chemically complex materials. Using the MoTaNbTi high-entropy alloy as a test system, we demonstrate the versatility of this approach by evaluating the lattice strain associated with each chemical motif, and computing the temperature dependence of chemical-fluctuations length scale.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"10 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01393-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Crystalline materials have atomic-scale fluctuations in their chemical composition that modulate various mesoscale properties. Establishing chemistry–microstructure relationships in such materials requires proper characterization of these chemical fluctuations. Yet, current characterization approaches (e.g., Warren–Cowley parameters) make only partial use of the complete chemical and structural information contained in local chemical motifs. Here we introduce a framework based on E(3)-equivariant graph neural networks that is capable of completely identifying chemical motifs in arbitrary crystalline structures with any number of chemical elements. This approach naturally leads to a proper information-theoretic measure for quantifying chemical short-range order (SRO) in chemically complex materials and a reduced representation of the chemical motif space. Our framework enables the correlation of any per-atom property with their corresponding local chemical motif, thereby enabling the exploration of structure–property relationships in chemically complex materials. Using the MoTaNbTi high-entropy alloy as a test system, we demonstrate the versatility of this approach by evaluating the lattice strain associated with each chemical motif, and computing the temperature dependence of chemical-fluctuations length scale.

Abstract Image

用 E(3)等变图神经网络表征短程秩序的化学特征
晶体材料的化学成分具有原子尺度的波动,可调节各种中尺度特性。建立此类材料的化学-微结构关系需要对这些化学波动进行适当的表征。然而,目前的表征方法(如 Warren-Cowley 参数)只能部分利用局部化学图案所包含的完整化学和结构信息。在此,我们介绍一种基于 E(3)- 等变图神经网络的框架,它能够完全识别任意化学元素数量的任意晶体结构中的化学图案。这种方法自然而然地为量化化学复杂材料中的化学短程有序(SRO)提供了一种适当的信息论测量方法,并简化了化学图案空间的表示。我们的框架可以将任何每原子性质与其相应的局部化学主题相关联,从而能够探索化学复杂材料中的结构-性质关系。我们以 MoTaNbTi 高熵合金为测试系统,通过评估与每个化学主题相关的晶格应变,以及计算化学波动长度尺度的温度依赖性,展示了这种方法的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信