Solvent-mediated oxide hydrogenation in layered cathodes

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2024-09-12 DOI:10.1126/science.adg4687
Gang Wan, Travis P. Pollard, Lin Ma, Marshall A. Schroeder, Chia-Chin Chen, Zihua Zhu, Zhan Zhang, Cheng-Jun Sun, Jiyu Cai, Harry L. Thaman, Arturas Vailionis, Haoyuan Li, Shelly Kelly, Zhenxing Feng, Joseph Franklin, Steven P. Harvey, Ye Zhang, Yingge Du, Zonghai Chen, Christopher J. Tassone, Hans-Georg Steinrück, Kang Xu, Oleg Borodin, Michael F. Toney
{"title":"Solvent-mediated oxide hydrogenation in layered cathodes","authors":"Gang Wan,&nbsp;Travis P. Pollard,&nbsp;Lin Ma,&nbsp;Marshall A. Schroeder,&nbsp;Chia-Chin Chen,&nbsp;Zihua Zhu,&nbsp;Zhan Zhang,&nbsp;Cheng-Jun Sun,&nbsp;Jiyu Cai,&nbsp;Harry L. Thaman,&nbsp;Arturas Vailionis,&nbsp;Haoyuan Li,&nbsp;Shelly Kelly,&nbsp;Zhenxing Feng,&nbsp;Joseph Franklin,&nbsp;Steven P. Harvey,&nbsp;Ye Zhang,&nbsp;Yingge Du,&nbsp;Zonghai Chen,&nbsp;Christopher J. Tassone,&nbsp;Hans-Georg Steinrück,&nbsp;Kang Xu,&nbsp;Oleg Borodin,&nbsp;Michael F. Toney","doi":"10.1126/science.adg4687","DOIUrl":null,"url":null,"abstract":"<div >Self-discharge and chemically induced mechanical effects degrade calendar and cycle life in intercalation-based electrochromic and electrochemical energy storage devices. In rechargeable lithium-ion batteries, self-discharge in cathodes causes voltage and capacity loss over time. The prevailing self-discharge model centers on the diffusion of lithium ions from the electrolyte into the cathode. We demonstrate an alternative pathway, where hydrogenation of layered transition metal oxide cathodes induces self-discharge through hydrogen transfer from carbonate solvents to delithiated oxides. In self-discharged cathodes, we further observe opposing proton and lithium ion concentration gradients, which contribute to chemical and structural heterogeneities within delithiated cathodes, accelerating degradation. Hydrogenation occurring in delithiated cathodes may affect the chemo-mechanical coupling of layered cathodes as well as the calendar life of lithium-ion batteries.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adg4687","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Self-discharge and chemically induced mechanical effects degrade calendar and cycle life in intercalation-based electrochromic and electrochemical energy storage devices. In rechargeable lithium-ion batteries, self-discharge in cathodes causes voltage and capacity loss over time. The prevailing self-discharge model centers on the diffusion of lithium ions from the electrolyte into the cathode. We demonstrate an alternative pathway, where hydrogenation of layered transition metal oxide cathodes induces self-discharge through hydrogen transfer from carbonate solvents to delithiated oxides. In self-discharged cathodes, we further observe opposing proton and lithium ion concentration gradients, which contribute to chemical and structural heterogeneities within delithiated cathodes, accelerating degradation. Hydrogenation occurring in delithiated cathodes may affect the chemo-mechanical coupling of layered cathodes as well as the calendar life of lithium-ion batteries.
层状阴极中溶剂介导的氧化物氢化
自放电和化学引起的机械效应会降低基于插层的电致变色和电化学储能设备的日历和循环寿命。在可充电锂离子电池中,阴极的自放电会随着时间的推移导致电压和容量损失。目前流行的自放电模式主要是锂离子从电解质扩散到阴极。我们展示了另一种途径,即层状过渡金属氧化物阴极的氢化会通过碳酸盐溶剂中的氢转移到二锂化氧化物中诱发自放电。在自放电阴极中,我们进一步观察到质子和锂离子浓度梯度相反,这导致了二锂化阴极内部的化学和结构异质性,加速了降解。在二锂化阴极中发生的氢化可能会影响层状阴极的化学机械耦合以及锂离子电池的日历寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信