Emelie Curl , Shaun Fallat , Ryan Moruzzi Jr , Carolyn Reinhart , Derek Young
{"title":"On the zero forcing number of the complement of graphs with forbidden subgraphs","authors":"Emelie Curl , Shaun Fallat , Ryan Moruzzi Jr , Carolyn Reinhart , Derek Young","doi":"10.1016/j.laa.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><p>Zero forcing and maximum nullity are two important graph parameters which have been laboriously studied in order to aid in the resolution of the Inverse Eigenvalue problem. Motivated in part by an observation that the zero forcing number for the complement of a tree on <em>n</em> vertices is either <span><math><mi>n</mi><mo>−</mo><mn>3</mn></math></span> or <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> in one exceptional case, we consider the zero forcing number for the complement of more general graphs under certain conditions, particularly those that do not contain complete bipartite subgraphs. We also move well beyond trees and completely study all of the possible zero forcing numbers for the complements of unicyclic graphs and cactus graphs. Finally, we yield equality between the maximum nullity and zero forcing number of several families of graph complements considered.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003719","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Zero forcing and maximum nullity are two important graph parameters which have been laboriously studied in order to aid in the resolution of the Inverse Eigenvalue problem. Motivated in part by an observation that the zero forcing number for the complement of a tree on n vertices is either or in one exceptional case, we consider the zero forcing number for the complement of more general graphs under certain conditions, particularly those that do not contain complete bipartite subgraphs. We also move well beyond trees and completely study all of the possible zero forcing numbers for the complements of unicyclic graphs and cactus graphs. Finally, we yield equality between the maximum nullity and zero forcing number of several families of graph complements considered.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.