Study on the Plastic Deformation Mechanism of Void-Containing Twin-Crystal Magnesium with Symmetric Tilt Grain Boundary Angles

IF 1.5 4区 材料科学 Q3 Chemistry
Qin Li, Junping Yao, Zhichen Wu, Buwei Li, Guoxing Chen, Lanmin Zhou
{"title":"Study on the Plastic Deformation Mechanism of Void-Containing Twin-Crystal Magnesium with Symmetric Tilt Grain Boundary Angles","authors":"Qin Li,&nbsp;Junping Yao,&nbsp;Zhichen Wu,&nbsp;Buwei Li,&nbsp;Guoxing Chen,&nbsp;Lanmin Zhou","doi":"10.1002/crat.202400119","DOIUrl":null,"url":null,"abstract":"<p>A twin-crystal magnesium (Mg) model with 9 different symmetric tilt grain boundary (STGB) angles (20°–80°) with preset nanohole defects is established by atomsk and lammps software. The mechanical behavior of grain boundary (GB) angles on twin-crystal Mg with cavity defects and its cavity evolution are simulated by the molecular dynamics method with embedded atomic potential, and the plastic deformation mechanism is revealed. The results show that the yield stress decreases with the increase of the STGB Angle during the stretching process. When the GB Angle increases from 20° to 80°, the yield stress decreases from 2.28 to 1.42 Gpa. This is because the larger the STGB Angle is, the larger the Schmidt factor is, and the easier it is to start dislocation slip during the stretching process. On the other hand, the larger the Angle of STGB, the more the number of atomic voids at the interface, and the more the number of dislocation nucleation points. The larger the Angle of STGB, the lower the strength of twinning Mg but the better the plasticity to avoid fracture. The plastic deformation mechanism mainly includes the nucleation of Shockley incomplete dislocation at STGBs, dislocation slip generates stacking faults (SFs), GB migration, and base plane dislocations.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400119","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

A twin-crystal magnesium (Mg) model with 9 different symmetric tilt grain boundary (STGB) angles (20°–80°) with preset nanohole defects is established by atomsk and lammps software. The mechanical behavior of grain boundary (GB) angles on twin-crystal Mg with cavity defects and its cavity evolution are simulated by the molecular dynamics method with embedded atomic potential, and the plastic deformation mechanism is revealed. The results show that the yield stress decreases with the increase of the STGB Angle during the stretching process. When the GB Angle increases from 20° to 80°, the yield stress decreases from 2.28 to 1.42 Gpa. This is because the larger the STGB Angle is, the larger the Schmidt factor is, and the easier it is to start dislocation slip during the stretching process. On the other hand, the larger the Angle of STGB, the more the number of atomic voids at the interface, and the more the number of dislocation nucleation points. The larger the Angle of STGB, the lower the strength of twinning Mg but the better the plasticity to avoid fracture. The plastic deformation mechanism mainly includes the nucleation of Shockley incomplete dislocation at STGBs, dislocation slip generates stacking faults (SFs), GB migration, and base plane dislocations.

具有对称倾斜晶界角的含空隙双晶镁的塑性变形机理研究
利用 atomsk 和 lammps 软件建立了具有 9 种不同对称倾斜晶界角(STGB)(20°-80°)和预设纳米孔缺陷的双晶镁(Mg)模型。利用内嵌原子势的分子动力学方法模拟了具有空穴缺陷的双晶镁上晶界(GB)角的力学行为及其空穴演化,揭示了塑性变形机理。结果表明,在拉伸过程中,屈服应力随 STGB 角的增大而减小。当 STGB 角从 20°增大到 80°时,屈服应力从 2.28 Gpa 下降到 1.42 Gpa。这是因为 STGB 角度越大,施密特因子就越大,在拉伸过程中就越容易开始位错滑移。另一方面,STGB 角度越大,界面上的原子空隙数量越多,差排成核点的数量也越多。STGB 角越大,孪晶镁的强度越低,但塑性越好,可避免断裂。塑性变形机制主要包括在 STGB 上肖克利不完全位错成核、位错滑移产生堆积断层(SF)、GB 迁移和基面位错。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信