Machine Learning-Based Compact Modeling of Silicon Cold Source Field-Effect Transistors

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Haoqing Xu;Weizhuo Gan;Shujin Guo;Shengli Zhang;Zhenhua Wu
{"title":"Machine Learning-Based Compact Modeling of Silicon Cold Source Field-Effect Transistors","authors":"Haoqing Xu;Weizhuo Gan;Shujin Guo;Shengli Zhang;Zhenhua Wu","doi":"10.1109/TNANO.2024.3442476","DOIUrl":null,"url":null,"abstract":"The Silicon cold source field-effect transistor (CSFET) offers a compelling solution for low-power logic devices due to its ability to achieve sub-60 mV/dec steep-slope switching with innovative source engineering, while maintaining compatibility with Silicon CMOS technology. Developing a compact model for CSFETs is crucial for advancing our understanding of these novel devices and enabling advanced design and simulation based on CSFETs. To this end, this work introduces a compact model specifically designed for n-type double-gate CSFETs. Employing the Landauer-Büttiker approach alongside machine learning (ML)-based band energy profiles, our model accounts for thermal current via ballistic transport and tunneling current from source-to-drain direct tunneling. Consequently, our model accurately represents the drain current-gate voltage relationship in CSFETs. Furthermore, our proposed model is applicable to both CSFETs and conventional MOSFETs. This enables benchmarking analysis between CSFETs and conventional MOSFETs, shedding light on their comparative performance metrics.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"615-621"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10634842/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Silicon cold source field-effect transistor (CSFET) offers a compelling solution for low-power logic devices due to its ability to achieve sub-60 mV/dec steep-slope switching with innovative source engineering, while maintaining compatibility with Silicon CMOS technology. Developing a compact model for CSFETs is crucial for advancing our understanding of these novel devices and enabling advanced design and simulation based on CSFETs. To this end, this work introduces a compact model specifically designed for n-type double-gate CSFETs. Employing the Landauer-Büttiker approach alongside machine learning (ML)-based band energy profiles, our model accounts for thermal current via ballistic transport and tunneling current from source-to-drain direct tunneling. Consequently, our model accurately represents the drain current-gate voltage relationship in CSFETs. Furthermore, our proposed model is applicable to both CSFETs and conventional MOSFETs. This enables benchmarking analysis between CSFETs and conventional MOSFETs, shedding light on their comparative performance metrics.
基于机器学习的硅冷源场效应晶体管紧凑建模
硅冷源场效应晶体管(CSFET)能够通过创新的源工程实现低于 60 mV/dec 的陡坡开关,同时保持与硅 CMOS 技术的兼容性,因此为低功耗逻辑器件提供了引人注目的解决方案。为 CSFET 开发一个紧凑的模型,对于增进我们对这些新型器件的了解以及实现基于 CSFET 的高级设计和仿真至关重要。为此,这项研究引入了一个专为 n 型双栅极 CSFET 设计的紧凑模型。我们的模型采用 Landauer-Büttiker 方法和基于机器学习 (ML) 的带能曲线,考虑了通过弹道传输的热电流和源极到漏极直接隧穿的隧穿电流。因此,我们的模型准确地反映了 CSFET 的漏极电流-栅极电压关系。此外,我们提出的模型适用于 CSFET 和传统 MOSFET。这使得 CSFET 和传统 MOSFET 之间的基准分析成为可能,从而揭示出它们的比较性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信