2-D Fixed-Frequency Terahertz Beam Steering With Microactuated Leaky-Wave Structure

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Naoki Tanaka;Yasuaki Monnai
{"title":"2-D Fixed-Frequency Terahertz Beam Steering With Microactuated Leaky-Wave Structure","authors":"Naoki Tanaka;Yasuaki Monnai","doi":"10.1109/TTHZ.2024.3420760","DOIUrl":null,"url":null,"abstract":"As the demand for high-speed communications grows, terahertz waves emerge as a promising frontier for 6G and beyond, offering unprecedented bandwidths. However, their shorter wavelengths result in significantly higher diffraction losses compared to microwaves, necessitating innovative solutions for directional beam steering to counteract these losses. Conventional large-aperture phased arrays face challenges at terahertz frequencies due to the lack of practical phase shifters. To address this challenge, this study introduces a novel 2-D beam steering technique employing a microdisplacement controlled leaky-wave structure. By exploiting the dispersion relation of waves propagating between quasiparallel metal plates, we effectively manipulate the wave trajectory and launch angle via precise displacement and tilt of the plates. Our experimental demonstration achieves effective 2-D terahertz beam steering, eliminating the need for frequency sweeping. At 280 GHz, we achieve a steering range of \n<inline-formula><tex-math>${\\bf \\pm \\! 37^{\\circ }}$</tex-math></inline-formula>\n horizontally with a plate tilt of \n<inline-formula><tex-math>${\\bf \\pm 0.169^\\circ }$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>${\\bf 18^{\\circ }}$</tex-math></inline-formula>\n vertically with a plate translation of 0.2 mm, along with a 3 dB frequency bandwidth of 9.7 GHz and a 10 dB bandwidth of 17.3 GHz. This method not only circumvents the limitations posed by the lack of phase shifters but also facilitates integration into compact, planar systems without expanding the physical profile. This result paves the way for directionally agile terahertz communications, enabling real-time user and device tracking capabilities.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 5","pages":"599-606"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10577480/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As the demand for high-speed communications grows, terahertz waves emerge as a promising frontier for 6G and beyond, offering unprecedented bandwidths. However, their shorter wavelengths result in significantly higher diffraction losses compared to microwaves, necessitating innovative solutions for directional beam steering to counteract these losses. Conventional large-aperture phased arrays face challenges at terahertz frequencies due to the lack of practical phase shifters. To address this challenge, this study introduces a novel 2-D beam steering technique employing a microdisplacement controlled leaky-wave structure. By exploiting the dispersion relation of waves propagating between quasiparallel metal plates, we effectively manipulate the wave trajectory and launch angle via precise displacement and tilt of the plates. Our experimental demonstration achieves effective 2-D terahertz beam steering, eliminating the need for frequency sweeping. At 280 GHz, we achieve a steering range of ${\bf \pm \! 37^{\circ }}$ horizontally with a plate tilt of ${\bf \pm 0.169^\circ }$ and ${\bf 18^{\circ }}$ vertically with a plate translation of 0.2 mm, along with a 3 dB frequency bandwidth of 9.7 GHz and a 10 dB bandwidth of 17.3 GHz. This method not only circumvents the limitations posed by the lack of phase shifters but also facilitates integration into compact, planar systems without expanding the physical profile. This result paves the way for directionally agile terahertz communications, enabling real-time user and device tracking capabilities.
采用微动漏波结构的二维固定频率太赫兹波束转向装置
随着对高速通信需求的增长,太赫兹波成为 6G 及更高速通信的一个前景广阔的前沿领域,可提供前所未有的带宽。然而,与微波相比,太赫兹波长较短,衍射损耗明显较高,因此需要创新的定向波束转向解决方案来抵消这些损耗。由于缺乏实用的移相器,传统的大孔径相控阵在太赫兹频率上面临挑战。为了应对这一挑战,本研究采用微位移控制漏波结构,引入了一种新型二维波束转向技术。利用波在准平行金属板之间传播的色散关系,我们通过精确位移和倾斜金属板来有效操纵波的轨迹和发射角。我们的实验演示实现了有效的二维太赫兹波束转向,无需扫频。在 280 GHz 时,我们实现了 ${\bf \pm \!37^{\circ }}$ 水平方向上,板倾斜度为 ${\bf \pm 0.169^\circ }$;垂直方向上,板平移 0.2 mm,转向范围为 ${\bf 18^{/circ}}$;3 dB 频率带宽为 9.7 GHz,10 dB 带宽为 17.3 GHz。这种方法不仅规避了因缺乏移相器而造成的限制,而且便于集成到紧凑的平面系统中,而无需扩大物理轮廓。这一成果为定向敏捷太赫兹通信铺平了道路,使实时用户和设备跟踪功能成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Terahertz Science and Technology
IEEE Transactions on Terahertz Science and Technology ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
7.10
自引率
9.40%
发文量
102
期刊介绍: IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信