The eigenvalue multiplicity of line graphs

IF 1 3区 数学 Q1 MATHEMATICS
Sarula Chang , Jianxi Li , Yirong Zheng
{"title":"The eigenvalue multiplicity of line graphs","authors":"Sarula Chang ,&nbsp;Jianxi Li ,&nbsp;Yirong Zheng","doi":"10.1016/j.laa.2024.08.021","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>m</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span>, <span><math><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the multiplicity of an eigenvalue <em>λ</em>, the cyclomatic number and the number of pendant vertices of a connected graph <em>G</em>, respectively. Yang et al. (2023) <span><span>[10]</span></span> proved that <span><math><mi>m</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>,</mo><mi>λ</mi><mo>)</mo><mo>≤</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for any tree <em>T</em>, and characterized all trees <em>T</em> with <span><math><mi>m</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>,</mo><mi>λ</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>, where <span><math><mi>L</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> is the line graph of <em>T</em>. In this paper, we extend their result from a tree <em>T</em> to any graph <span><math><mi>G</mi><mo>≠</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and prove that <span><math><mi>m</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>λ</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for any graph <span><math><mi>G</mi><mo>≠</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Moreover, all graphs <em>G</em> with <span><math><mi>m</mi><mo>(</mo><mi>L</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>2</mn><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>p</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> are completely characterized.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"703 ","pages":"Pages 47-62"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003550","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let m(G,λ), c(G) and p(G) be the multiplicity of an eigenvalue λ, the cyclomatic number and the number of pendant vertices of a connected graph G, respectively. Yang et al. (2023) [10] proved that m(L(T),λ)p(T)1 for any tree T, and characterized all trees T with m(L(T),λ)=p(T)1, where L(T) is the line graph of T. In this paper, we extend their result from a tree T to any graph GCn, and prove that m(L(G),λ)2c(G)+p(G)1 for any graph GCn. Moreover, all graphs G with m(L(G),1)=2c(G)+p(G)1 are completely characterized.

线图的特征值多重性
设 m(G,λ)、c(G) 和 p(G) 分别为连通图 G 的特征值 λ 的倍率、循环数和挂顶点数。Yang 等人(2023)[10] 证明了对于任意树 T,m(L(T),λ)≤p(T)-1,并表征了 m(L(T),λ)=p(T)-1 的所有树 T,其中 L(T) 是 T 的线图。本文将他们的结果从树 T 扩展到任何图 G≠Cn,并证明对于任何图 G≠Cn,m(L(G),λ)≤2c(G)+p(G)-1。此外,m(L(G),-1)=2c(G)+p(G)-1 的所有图形 G 都是完全表征的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信