Federated learning framework for prediction of net energy demand in transactive energy communities

IF 4.8 2区 工程技术 Q2 ENERGY & FUELS
Nuno Mendes , Jérôme Mendes , Javad Mohammadi , Pedro Moura
{"title":"Federated learning framework for prediction of net energy demand in transactive energy communities","authors":"Nuno Mendes ,&nbsp;Jérôme Mendes ,&nbsp;Javad Mohammadi ,&nbsp;Pedro Moura","doi":"10.1016/j.segan.2024.101522","DOIUrl":null,"url":null,"abstract":"<div><p>The implementation of transactive energy systems in communities requires new control mechanisms for enabling end-use energy trading. To optimize the operation of these communities, the availability of accurate predictions for the net energy demand is fundamental. However, to ensure effective management of flexible resources, the local generation and demand must be foretasted separately instead of just forecasting the net-energy demand. Additionally, to improve the forecast systems, more detailed data from the buildings are needed, but most information (such as patterns of occupancy) can be private. This paper proposes a novel federated learning (FL) framework for predicting building temporal net energy demand in transaction energy communities. The proposed approach is based on an FL architecture and has two independent forecast systems (generation and demand systems), ensuring collaborative learning among the buildings without sharing private data. The developed framework allows the integration of third-party data providers and facilitates coordination by a central server. The main goal of the framework is to support the management systems of transactive energy communities by computing the forecast of demand, generation, and net-energy demand. Additionally, such a framework has the novelty of introducing as an auxiliary system of Federated Transfer Learning, which will guarantee a more capable forecast system for new communities. The developed structure was tested using two communities, one with 100 buildings and the second with 25. The results showcase high accuracy and adaptability to different variables and scenarios, for instance, seasonal variations.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"40 ","pages":"Article 101522"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352467724002510/pdfft?md5=8ade0aa7610755f7b232140962632aca&pid=1-s2.0-S2352467724002510-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002510","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The implementation of transactive energy systems in communities requires new control mechanisms for enabling end-use energy trading. To optimize the operation of these communities, the availability of accurate predictions for the net energy demand is fundamental. However, to ensure effective management of flexible resources, the local generation and demand must be foretasted separately instead of just forecasting the net-energy demand. Additionally, to improve the forecast systems, more detailed data from the buildings are needed, but most information (such as patterns of occupancy) can be private. This paper proposes a novel federated learning (FL) framework for predicting building temporal net energy demand in transaction energy communities. The proposed approach is based on an FL architecture and has two independent forecast systems (generation and demand systems), ensuring collaborative learning among the buildings without sharing private data. The developed framework allows the integration of third-party data providers and facilitates coordination by a central server. The main goal of the framework is to support the management systems of transactive energy communities by computing the forecast of demand, generation, and net-energy demand. Additionally, such a framework has the novelty of introducing as an auxiliary system of Federated Transfer Learning, which will guarantee a more capable forecast system for new communities. The developed structure was tested using two communities, one with 100 buildings and the second with 25. The results showcase high accuracy and adaptability to different variables and scenarios, for instance, seasonal variations.

用于预测交互式能源社区净能源需求的联合学习框架
在社区实施交互式能源系统需要新的控制机制,以实现终端能源交易。要优化这些社区的运行,就必须对净能源需求进行准确预测。然而,为了确保灵活资源的有效管理,必须分别预测当地的发电量和需求量,而不仅仅是预测净能源需求。此外,要改进预测系统,还需要建筑物提供更详细的数据,但大多数信息(如占用模式)都是私人信息。本文提出了一种新颖的联合学习(FL)框架,用于预测交易能源社区中建筑物的时间净能源需求。所提出的方法基于 FL 架构,有两个独立的预测系统(发电系统和需求系统),可确保建筑物之间的协作学习,而无需共享私人数据。所开发的框架允许整合第三方数据提供商,并促进中央服务器的协调。该框架的主要目标是通过计算需求、发电和净能源需求的预测,支持交易型能源社区的管理系统。此外,该框架还引入了联邦转移学习辅助系统,确保为新社区提供功能更强的预测系统。我们使用两个社区对所开发的结构进行了测试,一个社区有 100 栋建筑,另一个社区有 25 栋建筑。测试结果表明,该系统具有很高的准确性,并能适应不同的变量和情况,例如季节性变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy Grids & Networks
Sustainable Energy Grids & Networks Energy-Energy Engineering and Power Technology
CiteScore
7.90
自引率
13.00%
发文量
206
审稿时长
49 days
期刊介绍: Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信