Machine learning driven performance for hole transport layer free carbon-based perovskite solar cells

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Sreeram Valsalakumar, Shubhranshu Bhandari, Anurag Roy, Tapas K. Mallick, Justin Hinshelwood, Senthilarasu Sundaram
{"title":"Machine learning driven performance for hole transport layer free carbon-based perovskite solar cells","authors":"Sreeram Valsalakumar, Shubhranshu Bhandari, Anurag Roy, Tapas K. Mallick, Justin Hinshelwood, Senthilarasu Sundaram","doi":"10.1038/s41524-024-01383-7","DOIUrl":null,"url":null,"abstract":"<p>The rapid advancement of machine learning (ML) technology across diverse domains has provided a framework for discovering and rationalising materials and photovoltaic devices. This study introduces a five-step methodology for implementing ML models in fabricating hole transport layer (HTL) free carbon-based PSCs (C-PSC). Our approach leverages various prevalent ML models, and we curated a comprehensive dataset of 700 data points using SCAPS-1D simulation, encompassing variations in the thickness of the electron transport layer (ETL) and perovskite layers, along with bandgap characteristics. Our results indicate that the ANN-based ML model exhibits superior predictive accuracy for C-PSC device parameters, achieving a low root mean square error (RMSE) of 0.028 and a high R-squared value of 0.954. The novelty of this work lies in its systematic use of ML to streamline the optimisation process, reducing the reliance on traditional trial-and-error methods and providing a deeper understanding of the interdependence of key device parameters.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"22 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01383-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of machine learning (ML) technology across diverse domains has provided a framework for discovering and rationalising materials and photovoltaic devices. This study introduces a five-step methodology for implementing ML models in fabricating hole transport layer (HTL) free carbon-based PSCs (C-PSC). Our approach leverages various prevalent ML models, and we curated a comprehensive dataset of 700 data points using SCAPS-1D simulation, encompassing variations in the thickness of the electron transport layer (ETL) and perovskite layers, along with bandgap characteristics. Our results indicate that the ANN-based ML model exhibits superior predictive accuracy for C-PSC device parameters, achieving a low root mean square error (RMSE) of 0.028 and a high R-squared value of 0.954. The novelty of this work lies in its systematic use of ML to streamline the optimisation process, reducing the reliance on traditional trial-and-error methods and providing a deeper understanding of the interdependence of key device parameters.

Abstract Image

机器学习驱动的无空穴传输层碳基包晶石太阳能电池性能
机器学习(ML)技术在各个领域的飞速发展,为发现材料和光伏器件并使之合理化提供了框架。本研究介绍了在制造无空穴传输层(HTL)碳基 PSC(C-PSC)时实施 ML 模型的五步方法。我们的方法利用了各种流行的 ML 模型,并通过 SCAPS-1D 仿真整理了一个包含 700 个数据点的综合数据集,其中包括电子传输层(ETL)和包晶层厚度的变化以及带隙特性。我们的研究结果表明,基于 ANN 的 ML 模型对 C-PSC 器件参数具有卓越的预测精度,均方根误差 (RMSE) 低至 0.028,R 平方值高达 0.954。这项工作的新颖之处在于系统地使用了 ML 来简化优化过程,减少了对传统试错方法的依赖,并加深了对关键器件参数相互依存关系的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信