Deep learning for symmetry classification using sparse 3D electron density data for inorganic compounds

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Seonghwan Kim, Byung Do Lee, Min Young Cho, Myoungho Pyo, Young-Kook Lee, Woon Bae Park, Kee-Sun Sohn
{"title":"Deep learning for symmetry classification using sparse 3D electron density data for inorganic compounds","authors":"Seonghwan Kim, Byung Do Lee, Min Young Cho, Myoungho Pyo, Young-Kook Lee, Woon Bae Park, Kee-Sun Sohn","doi":"10.1038/s41524-024-01402-7","DOIUrl":null,"url":null,"abstract":"<p>We report a novel deep learning (DL) method for classifying inorganic compounds using 3D electron density data. We transform Density Functional Theory (DFT)-derived CHGCAR files from the Materials Project (MP) and experimental data from the Inorganic Crystal Structure Database (ICSD) into point clouds and sparse tensors, optimized for use in DL models such as PointNet and Sparse 3D CNN. This approach effectively overcomes the limitations of handling the dense 3D data, a common challenge in DL. Contrasting with traditional 1D or 2D X-ray diffraction (XRD) patterns that necessitate complex reciprocal space analysis, our method utilizes 3D density data for direct interpretation in real lattice space. This shift significantly enhances classification accuracy, outperforming traditional XRD-driven DL methods. We achieve accuracies of 97.28%, 90.77%, and 90.10% for crystal system, extinction group, and space group classifications, respectively. Our 3D electron density-based DL approach not only showcases improved accuracy but also contributes a more intuitive and effective framework for materials discovery.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"1 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01402-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We report a novel deep learning (DL) method for classifying inorganic compounds using 3D electron density data. We transform Density Functional Theory (DFT)-derived CHGCAR files from the Materials Project (MP) and experimental data from the Inorganic Crystal Structure Database (ICSD) into point clouds and sparse tensors, optimized for use in DL models such as PointNet and Sparse 3D CNN. This approach effectively overcomes the limitations of handling the dense 3D data, a common challenge in DL. Contrasting with traditional 1D or 2D X-ray diffraction (XRD) patterns that necessitate complex reciprocal space analysis, our method utilizes 3D density data for direct interpretation in real lattice space. This shift significantly enhances classification accuracy, outperforming traditional XRD-driven DL methods. We achieve accuracies of 97.28%, 90.77%, and 90.10% for crystal system, extinction group, and space group classifications, respectively. Our 3D electron density-based DL approach not only showcases improved accuracy but also contributes a more intuitive and effective framework for materials discovery.

Abstract Image

利用稀疏三维电子密度数据对无机化合物进行对称性分类的深度学习
我们报告了一种利用三维电子密度数据对无机化合物进行分类的新型深度学习(DL)方法。我们将密度泛函理论(DFT)推导出的材料项目(MP)CHGCAR 文件和无机晶体结构数据库(ICSD)的实验数据转换成点云和稀疏张量,优化后用于点网和稀疏三维 CNN 等 DL 模型。这种方法有效克服了处理密集三维数据的局限性,这也是 DL 中的一个常见挑战。传统的一维或二维 X 射线衍射 (XRD) 图样需要进行复杂的倒易空间分析,而我们的方法则利用三维密度数据在真实晶格空间中进行直接解释。这种转变大大提高了分类准确性,优于传统的 XRD 驱动 DL 方法。我们的晶体系统、消光基团和空间群分类准确率分别达到 97.28%、90.77% 和 90.10%。我们基于三维电子密度的 DL 方法不仅提高了准确性,还为材料发现提供了一个更直观、更有效的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信