Anna M. Parenteau , Sally Hang , Johnna R. Swartz , Anthony S. Wexler , Camelia E. Hostinar
{"title":"Clearing the air: A systematic review of studies on air pollution and childhood brain outcomes to mobilize policy change","authors":"Anna M. Parenteau , Sally Hang , Johnna R. Swartz , Anthony S. Wexler , Camelia E. Hostinar","doi":"10.1016/j.dcn.2024.101436","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change, wildfires, and environmental justice concerns have drawn increased attention to the impact of air pollution on children’s health and development. Children are especially vulnerable to air pollution exposure, as their brains and bodies are still developing. The objective of this systematic review was to synthesize available empirical evidence on the associations between air pollution exposure and brain outcomes in developmental samples (ages 0–18 years old). Studies were identified by searching the PubMed and Web of Science Core Collection databases and underwent a two-phase screening process before inclusion. 40 studies were included in the review, which included measures of air pollution and brain outcomes at various points in development. Results linked air pollution to varied brain outcomes, including structural volumetric and cortical thickness differences, alterations in white matter microstructure, functional network changes, metabolic and molecular effects, as well as tumor incidence. Few studies included longitudinal changes in brain outcomes. This review also suggests methodologies for incorporating air pollution measures in developmental cognitive neuroscience studies and provides specific policy recommendations to reduce air pollution exposure and promote healthy brain development by improving access to clean air.</p></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"69 ","pages":"Article 101436"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878929324000975/pdfft?md5=d400e0f4a129ee2a17dcd7de73c4e604&pid=1-s2.0-S1878929324000975-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929324000975","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change, wildfires, and environmental justice concerns have drawn increased attention to the impact of air pollution on children’s health and development. Children are especially vulnerable to air pollution exposure, as their brains and bodies are still developing. The objective of this systematic review was to synthesize available empirical evidence on the associations between air pollution exposure and brain outcomes in developmental samples (ages 0–18 years old). Studies were identified by searching the PubMed and Web of Science Core Collection databases and underwent a two-phase screening process before inclusion. 40 studies were included in the review, which included measures of air pollution and brain outcomes at various points in development. Results linked air pollution to varied brain outcomes, including structural volumetric and cortical thickness differences, alterations in white matter microstructure, functional network changes, metabolic and molecular effects, as well as tumor incidence. Few studies included longitudinal changes in brain outcomes. This review also suggests methodologies for incorporating air pollution measures in developmental cognitive neuroscience studies and provides specific policy recommendations to reduce air pollution exposure and promote healthy brain development by improving access to clean air.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.