Aleksandr Shalimov , Mikhail Tashkinov , Ksenia Terekhina , Nataliya Elenskaya , Ilia Vindokurov , Vadim V. Silbersсhmidt
{"title":"Crack propagation in TPMS scaffolds under monotonic axial load: Effect of morphology","authors":"Aleksandr Shalimov , Mikhail Tashkinov , Ksenia Terekhina , Nataliya Elenskaya , Ilia Vindokurov , Vadim V. Silbersсhmidt","doi":"10.1016/j.medengphy.2024.104235","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the mechanical behaviour and failure of porous additively manufactured (AM) polylactide (PLA) scaffolds based on the triply periodic minimal surfaces (TPMS) is investigated using numerical calculations of their unit cells and representative volumes. The strain-amplification factor is chosen as the main parameter, and the most critical locations for failure of different types of scaffold structures are evaluated. The results obtained are presented in comparison with a multiple-crack-growth algorithm using the extended finite element method (XFEM), underpinned by the experimentally obtained fracture properties of PLA. The effect of morphology of TPMS structures on the pre-critical, critical and post-critical behaviours of scaffolds under monotonic loading regimes is assessed. The results provide an understanding of the fracture behaviour and main risk points for crack initiation in structures of AM-PLA scaffolds based on typical commonly used types of TPMS, as well as the influence of structure type and external load on this behaviour.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135045332400136X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the mechanical behaviour and failure of porous additively manufactured (AM) polylactide (PLA) scaffolds based on the triply periodic minimal surfaces (TPMS) is investigated using numerical calculations of their unit cells and representative volumes. The strain-amplification factor is chosen as the main parameter, and the most critical locations for failure of different types of scaffold structures are evaluated. The results obtained are presented in comparison with a multiple-crack-growth algorithm using the extended finite element method (XFEM), underpinned by the experimentally obtained fracture properties of PLA. The effect of morphology of TPMS structures on the pre-critical, critical and post-critical behaviours of scaffolds under monotonic loading regimes is assessed. The results provide an understanding of the fracture behaviour and main risk points for crack initiation in structures of AM-PLA scaffolds based on typical commonly used types of TPMS, as well as the influence of structure type and external load on this behaviour.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.