Elizabeth A. Kruse , Abhishek Saxena , Bridget J. Shovestul , Emily M. Dudek , Stephanie Reda , Jojo Dong , Arun Venkataraman , J. Steven Lamberti , David Dodell-Feder
{"title":"Training individuals with schizophrenia to gain volitional control of the theory of mind network with real-time fMRI: A pilot study","authors":"Elizabeth A. Kruse , Abhishek Saxena , Bridget J. Shovestul , Emily M. Dudek , Stephanie Reda , Jojo Dong , Arun Venkataraman , J. Steven Lamberti , David Dodell-Feder","doi":"10.1016/j.scog.2024.100329","DOIUrl":null,"url":null,"abstract":"<div><p>Individuals diagnosed with schizophrenia spectrum disorders (SSDs) often demonstrate alterations in the Theory of Mind Network (ToM-N). Here, in this proof-of-concept, single-arm pilot study, we investigate whether participants with an SSD (<em>N</em> = 7) were able to learn to volitionally control regions of the ToM-N (dorso/middle/ventromedial prefrontal cortex [D/M/VMPFC], left temporoparietal junction [LTPJ], precuneus [PC], right superior temporal sulcus [RSTS], and right temporoparietal junction [RTPJ]) using real-time fMRI neurofeedback (rtfMRI-NF). Region-of-interest analyses demonstrate that after neurofeedback training, participants were able to gain volitional control in the following ToM-N brain regions during the transfer task, where no active feedback was given: right temporoparietal junction, precuneus, and dorso/ventromedial prefrontal cortex (neurofeedback effect <em>Fs</em> > 6.17, <em>ps</em> < .05). These findings suggest that trained volitional control over the ToM-N is tentatively feasible with rtfMRI neurofeedback in SSD, although findings need to be replicated with more robust designs that include a control group and larger samples.</p></div>","PeriodicalId":38119,"journal":{"name":"Schizophrenia Research-Cognition","volume":"38 ","pages":"Article 100329"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215001324000301/pdfft?md5=b9df997a4f84a022a7a3050f119009b3&pid=1-s2.0-S2215001324000301-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia Research-Cognition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215001324000301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Individuals diagnosed with schizophrenia spectrum disorders (SSDs) often demonstrate alterations in the Theory of Mind Network (ToM-N). Here, in this proof-of-concept, single-arm pilot study, we investigate whether participants with an SSD (N = 7) were able to learn to volitionally control regions of the ToM-N (dorso/middle/ventromedial prefrontal cortex [D/M/VMPFC], left temporoparietal junction [LTPJ], precuneus [PC], right superior temporal sulcus [RSTS], and right temporoparietal junction [RTPJ]) using real-time fMRI neurofeedback (rtfMRI-NF). Region-of-interest analyses demonstrate that after neurofeedback training, participants were able to gain volitional control in the following ToM-N brain regions during the transfer task, where no active feedback was given: right temporoparietal junction, precuneus, and dorso/ventromedial prefrontal cortex (neurofeedback effect Fs > 6.17, ps < .05). These findings suggest that trained volitional control over the ToM-N is tentatively feasible with rtfMRI neurofeedback in SSD, although findings need to be replicated with more robust designs that include a control group and larger samples.