Sven H. M. Kaster, Lei Zhu, William L. Lyon, Rulin Ma, Stephen E. Ammann, M. Christina White
{"title":"Palladium-catalyzed cross-coupling of alcohols with olefins by positional tuning of a counteranion","authors":"Sven H. M. Kaster, Lei Zhu, William L. Lyon, Rulin Ma, Stephen E. Ammann, M. Christina White","doi":"10.1126/science.ado8027","DOIUrl":null,"url":null,"abstract":"<div >Transition metal–catalyzed cross-couplings have great potential to furnish complex ethers; however, challenges in the C(sp<sup>3</sup>)–O functionalization step have precluded general methods. Here, we describe computationally guided transition metal–ligand design that positions a hydrogen-bond acceptor anion at the reactive site to promote functionalization. A general cross-coupling of primary, secondary, and tertiary aliphatic alcohols with terminal olefins to furnish >130 ethers is achieved. The mild conditions tolerate functionality that is prone to substitution, elimination, and epimerization and achieve site selectivity in polyol settings. Mechanistic studies support the hypothesis that the ligand’s geometry and electronics direct positioning of the phosphate anion at the π-allyl-palladium terminus, facilitating the phosphate’s hydrogen-bond acceptor role toward the alcohol. Ligand-directed counteranion positioning in cationic transition metal catalysis has the potential to be a general strategy for promoting challenging bimolecular reactivity.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.ado8027","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal–catalyzed cross-couplings have great potential to furnish complex ethers; however, challenges in the C(sp3)–O functionalization step have precluded general methods. Here, we describe computationally guided transition metal–ligand design that positions a hydrogen-bond acceptor anion at the reactive site to promote functionalization. A general cross-coupling of primary, secondary, and tertiary aliphatic alcohols with terminal olefins to furnish >130 ethers is achieved. The mild conditions tolerate functionality that is prone to substitution, elimination, and epimerization and achieve site selectivity in polyol settings. Mechanistic studies support the hypothesis that the ligand’s geometry and electronics direct positioning of the phosphate anion at the π-allyl-palladium terminus, facilitating the phosphate’s hydrogen-bond acceptor role toward the alcohol. Ligand-directed counteranion positioning in cationic transition metal catalysis has the potential to be a general strategy for promoting challenging bimolecular reactivity.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.