Concurrent sensing of vector magnetic field based on diamond nitrogen-vacancy ensemble using a time-divided hardware-synchronized protocol.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yunpeng Zhai, Luheng Cheng, Yumeng Song, Jiajun Li, Zhiyang Yu, Yu Tian, Nanyang Xu
{"title":"Concurrent sensing of vector magnetic field based on diamond nitrogen-vacancy ensemble using a time-divided hardware-synchronized protocol.","authors":"Yunpeng Zhai, Luheng Cheng, Yumeng Song, Jiajun Li, Zhiyang Yu, Yu Tian, Nanyang Xu","doi":"10.1063/5.0217402","DOIUrl":null,"url":null,"abstract":"<p><p>A diamond nitrogen-vacancy (NV) ensemble has been developed as a vector magnetometry platform for sensing external time-varying magnetic fields. However, due to the complexity of manipulating electron spins along different directions, a current vector NV magnetometer often needs a large amount of supporting equipment, preventing its applications in a compact circumstance. Here, we develop a hardware-level protocol to realize a multi-axis NV magnetometer using only a single channel of microwave generation and signal detection resources. This mechanism is to monitor each resonance serialized in a sequence and measure the electron-spin frequency shifts concurrently in real time. The functionality is realized by a home-made control system with an on-chip direct digital synthesis generator and signal processor. We finally achieve a vector sensitivity of around 14 nT/Hz on four different axes at the same time. We also analyze the phase delay of the sensing signal between different axes induced by the protocol. This protocol is compatible with other schemes to further improve the performance, such as hyperfine driving, balanced detection, and high-efficiency photon collection methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0217402","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A diamond nitrogen-vacancy (NV) ensemble has been developed as a vector magnetometry platform for sensing external time-varying magnetic fields. However, due to the complexity of manipulating electron spins along different directions, a current vector NV magnetometer often needs a large amount of supporting equipment, preventing its applications in a compact circumstance. Here, we develop a hardware-level protocol to realize a multi-axis NV magnetometer using only a single channel of microwave generation and signal detection resources. This mechanism is to monitor each resonance serialized in a sequence and measure the electron-spin frequency shifts concurrently in real time. The functionality is realized by a home-made control system with an on-chip direct digital synthesis generator and signal processor. We finally achieve a vector sensitivity of around 14 nT/Hz on four different axes at the same time. We also analyze the phase delay of the sensing signal between different axes induced by the protocol. This protocol is compatible with other schemes to further improve the performance, such as hyperfine driving, balanced detection, and high-efficiency photon collection methods.

利用分时硬件同步协议,基于金刚石氮空位组合的矢量磁场并发感应。
金刚石氮空位(NV)集合体已被开发为矢量磁力计平台,用于感应外部时变磁场。然而,由于沿不同方向操纵电子自旋的复杂性,目前的矢量氮空位磁力计往往需要大量配套设备,无法在紧凑的环境中应用。在此,我们开发了一种硬件级协议,只需使用单通道微波发生和信号检测资源即可实现多轴 NV 磁强计。该机制可监测序列中的每个共振,并同时实时测量电子自旋频率的移动。该功能由一个自制的控制系统实现,该系统带有片上直接数字合成发生器和信号处理器。我们最终在四个不同轴上同时实现了约 14 nT/Hz 的矢量灵敏度。我们还分析了协议引起的不同轴之间传感信号的相位延迟。该协议可与其他方案兼容,以进一步提高性能,如超线性驱动、平衡探测和高效光子收集方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信