Protein Hydrolysates from Pleurotus geesteranus Modified by Bacillus amyloliquefaciens γ-Glutamyl Transpeptidase Exhibit a Remarkable Taste-Enhancing Effect
{"title":"Protein Hydrolysates from Pleurotus geesteranus Modified by Bacillus amyloliquefaciens γ-Glutamyl Transpeptidase Exhibit a Remarkable Taste-Enhancing Effect","authors":"Xiaozhou Xia, Yu Fu*, Liang Ma, Hankun Zhu, Yong Yu, Hongjie Dai, Jiadong Han, Xin Liu, Zhengfang Liu and Yuhao Zhang*, ","doi":"10.1021/acs.jafc.2c03941","DOIUrl":null,"url":null,"abstract":"<p >Long-term high salt intake exerts a negative impact on human health. The excessive use of sodium substitutes in the food industry can lead to decreased sensory quality of food. γ-Glutamyl peptides with pronounced taste-enhancing effects can offer an alternative approach to salt reduction. However, the content and yield of γ-glutamyl peptides in natural foods are relatively low. Enzyme-catalyzed synthesis of γ-glutamyl peptides provides a feasible solution. In this study, <i>Pleurotus geesteranus</i> was hydrolyzed by Flavourzyme to generate protein hydrolysates. Subsequently, they were modified by <i>Bacillus amyloliquefaciens</i> γ-glutamyl transpeptidase to generate γ-glutamyl peptides. The reaction conditions were optimized and their taste-enhancing effects were evaluated. Their peptide sequences were identified by parallel reaction monitoring with liquid chromatography–tandem mass spectrometry and analyzed using molecular docking. The optimal conditions for generation of γ-glutamyl peptides were a pH of 10.0, an enzyme condition of 1.2 U/g, and a reaction time of 2 h, which can elicit a strong kokumi taste. Notably, it exhibited a remarkable taste-enhancing effect for umami intensity (76.07%) and saltiness intensity (1.23-fold). Several novel γ-glutamyl peptide sequences were found by liquid chromatography–tandem mass spectrometry, whereas the binding to the calcium-sensing receptor was confirmed by molecular docking analysis. Overall, γ-glutamyl peptides from <i>P. geesteranus</i> could significantly enhance the umami and salt tastes, which can serve as promising taste enhancers.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"70 38","pages":"12143–12155"},"PeriodicalIF":5.7000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.2c03941","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Long-term high salt intake exerts a negative impact on human health. The excessive use of sodium substitutes in the food industry can lead to decreased sensory quality of food. γ-Glutamyl peptides with pronounced taste-enhancing effects can offer an alternative approach to salt reduction. However, the content and yield of γ-glutamyl peptides in natural foods are relatively low. Enzyme-catalyzed synthesis of γ-glutamyl peptides provides a feasible solution. In this study, Pleurotus geesteranus was hydrolyzed by Flavourzyme to generate protein hydrolysates. Subsequently, they were modified by Bacillus amyloliquefaciens γ-glutamyl transpeptidase to generate γ-glutamyl peptides. The reaction conditions were optimized and their taste-enhancing effects were evaluated. Their peptide sequences were identified by parallel reaction monitoring with liquid chromatography–tandem mass spectrometry and analyzed using molecular docking. The optimal conditions for generation of γ-glutamyl peptides were a pH of 10.0, an enzyme condition of 1.2 U/g, and a reaction time of 2 h, which can elicit a strong kokumi taste. Notably, it exhibited a remarkable taste-enhancing effect for umami intensity (76.07%) and saltiness intensity (1.23-fold). Several novel γ-glutamyl peptide sequences were found by liquid chromatography–tandem mass spectrometry, whereas the binding to the calcium-sensing receptor was confirmed by molecular docking analysis. Overall, γ-glutamyl peptides from P. geesteranus could significantly enhance the umami and salt tastes, which can serve as promising taste enhancers.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.