{"title":"Majorization in some symplectic weak supermajorizations","authors":"Shaowu Huang , Hemant K. Mishra","doi":"10.1016/j.laa.2024.08.019","DOIUrl":null,"url":null,"abstract":"<div><p>Symplectic eigenvalues are known to satisfy analogs of several classic eigenvalue inequalities. Of these is a set of weak supermajorization relations concerning symplectic eigenvalues that are weaker analogs of some majorization relations corresponding to eigenvalues. The aim of this letter is to establish necessary and sufficient conditions for the saturation of the symplectic weak supermajorization relations by majorization.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003471","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Symplectic eigenvalues are known to satisfy analogs of several classic eigenvalue inequalities. Of these is a set of weak supermajorization relations concerning symplectic eigenvalues that are weaker analogs of some majorization relations corresponding to eigenvalues. The aim of this letter is to establish necessary and sufficient conditions for the saturation of the symplectic weak supermajorization relations by majorization.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.