Jin Zhang, Ofer Neufeld, Nicolas Tancogne-Dejean, I-Te Lu, Hannes Hübener, Umberto De Giovannini, Angel Rubio
{"title":"Enhanced high harmonic efficiency through phonon-assisted photodoping effect","authors":"Jin Zhang, Ofer Neufeld, Nicolas Tancogne-Dejean, I-Te Lu, Hannes Hübener, Umberto De Giovannini, Angel Rubio","doi":"10.1038/s41524-024-01399-z","DOIUrl":null,"url":null,"abstract":"<p>High-harmonic generation (HHG) has emerged as a central technique in attosecond science and strong-field physics, providing a tool for investigating ultrafast dynamics. However, the microscopic mechanism of HHG in solids is still under debate, and it is unclear how it is modified in the ubiquitous presence of phonons. Here we theoretically investigate the role of collectively coherent vibrations in HHG in a wide range of solids (e.g., hBN, graphite, 2H-MoS<sub>2</sub>, and diamond). We predict that phonon-assisted high harmonic yields can be significantly enhanced, compared to the phonon-free case – up to a factor of ~20 for a transverse optical phonon in bulk hBN. We also show that the emitted harmonics strongly depend on the character of the pumped vibrational modes. Through state-of-the-art ab initio calculations, we elucidate the physical origin of the HHG yield enhancement – phonon-assisted photoinduced carrier doping, which plays a paramount role in both intraband and interband electron dynamics. Our research illuminates a clear pathway toward comprehending phonon-mediated nonlinear optical processes within materials, offering a powerful tool to deliberately engineer and govern solid-state high harmonics.</p><figure></figure>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"51 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01399-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-harmonic generation (HHG) has emerged as a central technique in attosecond science and strong-field physics, providing a tool for investigating ultrafast dynamics. However, the microscopic mechanism of HHG in solids is still under debate, and it is unclear how it is modified in the ubiquitous presence of phonons. Here we theoretically investigate the role of collectively coherent vibrations in HHG in a wide range of solids (e.g., hBN, graphite, 2H-MoS2, and diamond). We predict that phonon-assisted high harmonic yields can be significantly enhanced, compared to the phonon-free case – up to a factor of ~20 for a transverse optical phonon in bulk hBN. We also show that the emitted harmonics strongly depend on the character of the pumped vibrational modes. Through state-of-the-art ab initio calculations, we elucidate the physical origin of the HHG yield enhancement – phonon-assisted photoinduced carrier doping, which plays a paramount role in both intraband and interband electron dynamics. Our research illuminates a clear pathway toward comprehending phonon-mediated nonlinear optical processes within materials, offering a powerful tool to deliberately engineer and govern solid-state high harmonics.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.