Baoxin Zhang , Wanxiong He , Zhiwei Pei , Qingwen Guo , Jianzhong Wang , Mingqi Sun , Xiaolong Yang , Jirigala Ariben , Siqin Li , Wei Feng , Chenyang Meng , Zhenqun Zhao , Chao Sun , Xiaoxin Hu , Rui Bai , Xing Wang , Ting Hao
{"title":"Plasma proteins, circulating metabolites mediate causal inference studies on the effect of gut bacteria on the risk of osteoporosis development","authors":"Baoxin Zhang , Wanxiong He , Zhiwei Pei , Qingwen Guo , Jianzhong Wang , Mingqi Sun , Xiaolong Yang , Jirigala Ariben , Siqin Li , Wei Feng , Chenyang Meng , Zhenqun Zhao , Chao Sun , Xiaoxin Hu , Rui Bai , Xing Wang , Ting Hao","doi":"10.1016/j.arr.2024.102479","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The role of gut bacteria in preventing and delaying osteoporosis has been studied. However, the causal relationship between gut bacteria, plasma proteins, circulating metabolites and osteoporosis (OP) risk has not been fully revealed.</p></div><div><h3>Materials and methods</h3><p>In this study, a two-sample Mendelian randomization study (MR) approach was used to assess the causal associations between gut bacteria, plasma proteins and circulating metabolites, and osteoporosis risk using Genome Wide Association Study (GWAS) data from gut bacteria(n=8208), plasma proteins(n=2263), circulating metabolites (n=123), and osteoporosis (3203 cases and 16380452 controls). Inverse-variance weighted (IVW) was used as the main analytical method to estimate the MR causal effect and to perform directional sensitivity analysis of causality. Finally, the mediating effect values for the influence of gut flora on OP pathogenesis through circulating metabolites were calculated by univariate MR analysis, and multivariate MR analysis. Next, we evaluated the effect of Phosphatidylcholine on the osteogenic function of bone marrow mesenchymal stem cells (BMSCs) through relevant experiments, including Edu detection of cell proliferation, alkaline phosphatase (ALP) staining, Alizarin red staining to evaluate osteogenic function, qPCR and WB detection of osteogenic differentiation related gene expression.</p></div><div><h3>Results</h3><p>A total of 9 gut microbial taxa, 15 plasma proteins and eight circulating metabolites were analysed for significant causal associations with the development of OP. Significant causal effects of 7 on gut bacteria, plasma proteins and circulating metabolites were analysed by univariate MR analysis and these results were used as exposure factors for subsequent multivariate MR. Multivariate MR analyses yielded a significant effect of circulating metabolites Phosphatidylcholine and other cholines on OP (P<0.05). Further mediation effect analysis showed that the mediation effect of Bifidobacteriaceae affecting OP through the circulating metabolite Phosphatidylcholine and other cholines was −0.0224, with a 95 % confidence interval for the mediation effect that did not include 0, and the complete mediation effect was significant. Phosphatidylcholine can promote BMSCs proliferation and osteogenesis.</p></div><div><h3>Conclusion</h3><p>Our study demonstrated significant causal associations of gut bacteria, plasma proteins and circulating metabolites on OP, and that Bifidobacteriaceae affect OP through the circulating metabolites Phosphatidylcholine and other cholines. Phosphatidylcholine affects the osteogenic ability of BMSCs. Further exploration of potential microbiota-associated mechanisms of bone metabolism may offer new avenues for osteoporosis prevention and treatment of osteoporosis.</p></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"101 ","pages":"Article 102479"},"PeriodicalIF":12.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1568163724002976/pdfft?md5=fc9f884b4d6495833c3437c2bd5cebd9&pid=1-s2.0-S1568163724002976-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163724002976","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The role of gut bacteria in preventing and delaying osteoporosis has been studied. However, the causal relationship between gut bacteria, plasma proteins, circulating metabolites and osteoporosis (OP) risk has not been fully revealed.
Materials and methods
In this study, a two-sample Mendelian randomization study (MR) approach was used to assess the causal associations between gut bacteria, plasma proteins and circulating metabolites, and osteoporosis risk using Genome Wide Association Study (GWAS) data from gut bacteria(n=8208), plasma proteins(n=2263), circulating metabolites (n=123), and osteoporosis (3203 cases and 16380452 controls). Inverse-variance weighted (IVW) was used as the main analytical method to estimate the MR causal effect and to perform directional sensitivity analysis of causality. Finally, the mediating effect values for the influence of gut flora on OP pathogenesis through circulating metabolites were calculated by univariate MR analysis, and multivariate MR analysis. Next, we evaluated the effect of Phosphatidylcholine on the osteogenic function of bone marrow mesenchymal stem cells (BMSCs) through relevant experiments, including Edu detection of cell proliferation, alkaline phosphatase (ALP) staining, Alizarin red staining to evaluate osteogenic function, qPCR and WB detection of osteogenic differentiation related gene expression.
Results
A total of 9 gut microbial taxa, 15 plasma proteins and eight circulating metabolites were analysed for significant causal associations with the development of OP. Significant causal effects of 7 on gut bacteria, plasma proteins and circulating metabolites were analysed by univariate MR analysis and these results were used as exposure factors for subsequent multivariate MR. Multivariate MR analyses yielded a significant effect of circulating metabolites Phosphatidylcholine and other cholines on OP (P<0.05). Further mediation effect analysis showed that the mediation effect of Bifidobacteriaceae affecting OP through the circulating metabolite Phosphatidylcholine and other cholines was −0.0224, with a 95 % confidence interval for the mediation effect that did not include 0, and the complete mediation effect was significant. Phosphatidylcholine can promote BMSCs proliferation and osteogenesis.
Conclusion
Our study demonstrated significant causal associations of gut bacteria, plasma proteins and circulating metabolites on OP, and that Bifidobacteriaceae affect OP through the circulating metabolites Phosphatidylcholine and other cholines. Phosphatidylcholine affects the osteogenic ability of BMSCs. Further exploration of potential microbiota-associated mechanisms of bone metabolism may offer new avenues for osteoporosis prevention and treatment of osteoporosis.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.