{"title":"Multi-omics reveals the metabolic changes and genetic basis of post-flowering rice caryopsis under blue light","authors":"Ping Zhang, Yongsheng Tang, Junna Liu, Qianchao Wang, Li Li, Hanxue Li, Xuqin Wang, Lingyuan Zhang, Yutao Bai, Guofei Jiang, Liubin Huang, Peng Qin","doi":"10.1186/s40538-024-00654-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The effects of blue light on photosynthetic organs have been studied. However, its effects on non-photosynthetic organs, in particular, on the early stages of rice caryopsis development, are unclear. Thus, we aimed to determine the metabolic characteristics of caryopsis development under blue light to improve the metabolic quality of crop kernels.</p><h3>Results</h3><p>We conducted a multi-omics analysis of each of the three periods from the beginning of cellular differentiation to the end of morphogenesis in post-pollination seeds of a japonica rice variety to explore the effect of blue light on metabolic levels during these metabolic changes and its genetic basis. It was found that blue light caused a gradual decrease in auxin content, a significant increase in the accumulation of JA and flavonoids, and a downregulation of the expression of many starch-related genes and proteins, leads to reduced starch synthesis and smaller starch granules. In addition, the gene co-expression network identified three transcription factors that may regulate starch and two that may regulate flavonoids.</p><h3>Conclusions</h3><p>It was found through multi-omics testing that hormones such as jasmonic acid and auxins, and metabolites including alkaloids, flavonoids, lipids, organic acids, phenolic acids, and terpenoids altered significantly. Transcriptome and proteome analyses showed that blue light affected the seed nutrient repository activity. Specifically, starch- and gluten-related genes and proteins were significantly downregulated. Co- and WGCNA analyses identified several transcription factors that were regulated under blue light and identified key regulators of starch. Our study provides an understanding of the effects of blue light on post-flowering development in Gramineae and provides a framework for blue light-induced synthesis of secondary metabolites.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00654-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00654-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The effects of blue light on photosynthetic organs have been studied. However, its effects on non-photosynthetic organs, in particular, on the early stages of rice caryopsis development, are unclear. Thus, we aimed to determine the metabolic characteristics of caryopsis development under blue light to improve the metabolic quality of crop kernels.
Results
We conducted a multi-omics analysis of each of the three periods from the beginning of cellular differentiation to the end of morphogenesis in post-pollination seeds of a japonica rice variety to explore the effect of blue light on metabolic levels during these metabolic changes and its genetic basis. It was found that blue light caused a gradual decrease in auxin content, a significant increase in the accumulation of JA and flavonoids, and a downregulation of the expression of many starch-related genes and proteins, leads to reduced starch synthesis and smaller starch granules. In addition, the gene co-expression network identified three transcription factors that may regulate starch and two that may regulate flavonoids.
Conclusions
It was found through multi-omics testing that hormones such as jasmonic acid and auxins, and metabolites including alkaloids, flavonoids, lipids, organic acids, phenolic acids, and terpenoids altered significantly. Transcriptome and proteome analyses showed that blue light affected the seed nutrient repository activity. Specifically, starch- and gluten-related genes and proteins were significantly downregulated. Co- and WGCNA analyses identified several transcription factors that were regulated under blue light and identified key regulators of starch. Our study provides an understanding of the effects of blue light on post-flowering development in Gramineae and provides a framework for blue light-induced synthesis of secondary metabolites.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.