Advancements in CIGS/ZnS heterojunction solar cells: Experimental and numerical analysis

IF 3.1 3区 物理与天体物理 Q2 Engineering
Optik Pub Date : 2024-08-23 DOI:10.1016/j.ijleo.2024.172008
Taoufik Chargui , Fatima Lmai , Khalid Rahmani
{"title":"Advancements in CIGS/ZnS heterojunction solar cells: Experimental and numerical analysis","authors":"Taoufik Chargui ,&nbsp;Fatima Lmai ,&nbsp;Khalid Rahmani","doi":"10.1016/j.ijleo.2024.172008","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a comprehensive experimental investigation conducted on a CIGS-based solar cell incorporating a ZnS buffer layer. The primary objective was to determine key parameters of the CIGS/ZnS heterojunction, including parasitic resistances (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>sh</mi></mrow></msub></math></span>), ideality factor (n), and barrier height (<span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span>), using experimental current-voltage (I-V) characteristics over a temperature range of 150 K to 300 K under dark conditions. The heterojunction was modelled using a single-diode electrical circuit that accounted for parasitic resistances. Two methods were employed for parameter determination: direct analysis of the (I-V) curves and Cheung's method. Additionally, the charge transport mechanism within the heterojunction is investigated and discussed. Furthermore, the performance of the Al:ZnO/i:ZnO/ZnS/CIGS/Mo solar cell was assessed using the SCAPS-1D simulator, demonstrating an initial solar energy conversion efficiency of 15.01 %. To enhance this efficiency, a hole transport layer (HTL) was integrated between the back electrode and the absorber layer. Extensive studies were conducted to optimize the thickness and doping density of the HTL, including a comparative analysis of different materials used as HTLs. These optimizations resulted in a significant increase in conversion efficiency, reaching up to 28.68 %.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"314 ","pages":"Article 172008"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004078","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive experimental investigation conducted on a CIGS-based solar cell incorporating a ZnS buffer layer. The primary objective was to determine key parameters of the CIGS/ZnS heterojunction, including parasitic resistances (Rs and Rsh), ideality factor (n), and barrier height (ϕB), using experimental current-voltage (I-V) characteristics over a temperature range of 150 K to 300 K under dark conditions. The heterojunction was modelled using a single-diode electrical circuit that accounted for parasitic resistances. Two methods were employed for parameter determination: direct analysis of the (I-V) curves and Cheung's method. Additionally, the charge transport mechanism within the heterojunction is investigated and discussed. Furthermore, the performance of the Al:ZnO/i:ZnO/ZnS/CIGS/Mo solar cell was assessed using the SCAPS-1D simulator, demonstrating an initial solar energy conversion efficiency of 15.01 %. To enhance this efficiency, a hole transport layer (HTL) was integrated between the back electrode and the absorber layer. Extensive studies were conducted to optimize the thickness and doping density of the HTL, including a comparative analysis of different materials used as HTLs. These optimizations resulted in a significant increase in conversion efficiency, reaching up to 28.68 %.

CIGS/ZnS 异质结太阳能电池的进展:实验和数值分析
本研究介绍了对含有 ZnS 缓冲层的铜铟镓硒太阳能电池进行的全面实验研究。主要目的是利用黑暗条件下 150 K 至 300 K 温度范围内的实验电流-电压(I-V)特性,确定 CIGS/ZnS 异质结的关键参数,包括寄生电阻(Rs 和 Rsh)、ideality 因子(n)和势垒高度(jB)。异质结采用单二极管电路建模,其中考虑了寄生电阻。参数确定采用了两种方法:直接分析 (I-V) 曲线和张氏方法。此外,还对异质结内的电荷传输机制进行了研究和讨论。此外,还使用 SCAPS-1D 模拟器评估了 Al:ZnO/i:ZnO/ZnS/CIGS/Mo 太阳能电池的性能,结果显示其初始太阳能转换效率为 15.01%。为了提高这一效率,在背电极和吸收层之间集成了空穴传输层(HTL)。对 HTL 的厚度和掺杂密度进行了广泛的优化研究,包括对用作 HTL 的不同材料进行比较分析。这些优化措施显著提高了转换效率,最高可达 28.68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信