Unknotting nonorientable surfaces of genus 4 and 5

IF 1 3区 数学 Q1 MATHEMATICS
Mark Pencovitch
{"title":"Unknotting nonorientable surfaces of genus 4 and 5","authors":"Mark Pencovitch","doi":"10.1016/j.laa.2024.08.014","DOIUrl":null,"url":null,"abstract":"<div><p>Expanding on work by Conway, Orson, and Powell, we study the isotopy classes rel. boundary of nonorientable, compact, locally flatly embedded surfaces in <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> with knot group <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</p><p>In particular we show that if two such surfaces have the same normal Euler number, the same fixed knot boundary <em>K</em> such that <span><math><mo>|</mo><mi>det</mi><mo>⁡</mo><mo>(</mo><mi>K</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>1</mn></math></span>, and the same nonorientable genus 4 or 5, then they are ambiently isotopic rel. boundary.</p><p>This implies that closed, nonorientable, locally flatly embedded surfaces in the 4-sphere with knot group <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of nonorientable genus 4 and 5 are topologically unknotted. The proof relies on calculations, implemented in Sage, which imply that an obstruction to modified surgery is elementary. Furthermore we show that this method fails for nonorientable genus 6 and 7.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524003410/pdfft?md5=b5b1d92c3f68749bd2133863f112514f&pid=1-s2.0-S0024379524003410-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003410","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Expanding on work by Conway, Orson, and Powell, we study the isotopy classes rel. boundary of nonorientable, compact, locally flatly embedded surfaces in D4 with knot group Z2.

In particular we show that if two such surfaces have the same normal Euler number, the same fixed knot boundary K such that |det(K)|=1, and the same nonorientable genus 4 or 5, then they are ambiently isotopic rel. boundary.

This implies that closed, nonorientable, locally flatly embedded surfaces in the 4-sphere with knot group Z2 of nonorientable genus 4 and 5 are topologically unknotted. The proof relies on calculations, implemented in Sage, which imply that an obstruction to modified surgery is elementary. Furthermore we show that this method fails for nonorientable genus 6 and 7.

解结属 4 和 5 的非定向曲面
在康威、奥森和鲍威尔工作的基础上,我们研究了结群为 Z2 的 D4 中不可定向、紧凑、局部平嵌曲面的同位类相对边界。特别是,我们证明了如果两个这样的曲面具有相同的法欧拉数、相同的固定结边界 K(使得 |det(K)|=1 )以及相同的不可定向属 4 或 5,那么它们就是环境同位类相对边界。这意味着在 4 球中,具有不可定向的结群 Z2 的不可定向属 4 和 5 的封闭、不可定向、局部平嵌曲面在拓扑上是无结的。证明依赖于在 Sage 中实现的计算,这意味着修正手术的障碍是基本的。此外,我们还证明了这种方法对于不可定向的属 6 和属 7 不适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信