{"title":"Real-time identification of noise type contaminated in surface electromyogram signals using efficient statistical features","authors":"Pornchai Phukpattaranont , Nantarika Thiamchoo , Paramin Neranon","doi":"10.1016/j.medengphy.2024.104232","DOIUrl":null,"url":null,"abstract":"<div><p>Different types of noise contaminating the surface electromyogram (EMG) signal may degrade the recognition performance. For noise removal, the type of noise has to first be identified. In this paper, we propose a real-time efficient system for identifying a clean EMG signal and noisy EMG signals contaminated with any one of the following three types of noise: electrocardiogram interference, spike noise, and power line interference. Two statistical descriptors, kurtosis and skewness, are used as input features for the cascading quadratic discriminant analysis classifier. An efficient simplification of kurtosis and skewness calculations that can reduce computation time and memory storage is proposed. The experimental results from the real-time system based on an ATmega 2560 microcontroller demonstrate that the kurtosis and skewness values show root mean square errors between the traditional and proposed efficient techniques of 0.08 and 0.09, respectively. The identification accuracy with five-fold cross-validation resulting from the quadratic discriminant analysis classifier is 96.00%.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"131 ","pages":"Article 104232"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001334","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Different types of noise contaminating the surface electromyogram (EMG) signal may degrade the recognition performance. For noise removal, the type of noise has to first be identified. In this paper, we propose a real-time efficient system for identifying a clean EMG signal and noisy EMG signals contaminated with any one of the following three types of noise: electrocardiogram interference, spike noise, and power line interference. Two statistical descriptors, kurtosis and skewness, are used as input features for the cascading quadratic discriminant analysis classifier. An efficient simplification of kurtosis and skewness calculations that can reduce computation time and memory storage is proposed. The experimental results from the real-time system based on an ATmega 2560 microcontroller demonstrate that the kurtosis and skewness values show root mean square errors between the traditional and proposed efficient techniques of 0.08 and 0.09, respectively. The identification accuracy with five-fold cross-validation resulting from the quadratic discriminant analysis classifier is 96.00%.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.