Zongying Fu , Yun Lu , Guofang Wu , Long Bai , Daniel Barker-Rothschild , Jianxiong Lyu , Shouxin Liu , Orlando J. Rojas
{"title":"Wood elasticity and compressible wood-based materials: Functional design and applications","authors":"Zongying Fu , Yun Lu , Guofang Wu , Long Bai , Daniel Barker-Rothschild , Jianxiong Lyu , Shouxin Liu , Orlando J. Rojas","doi":"10.1016/j.pmatsci.2024.101354","DOIUrl":null,"url":null,"abstract":"<div><p>The typical strength of wood makes it suitable as a structural material. Under load, natural wood exhibits a small strain within the elastic range. Such elasticity is associated with fast recovery materials, which hold relevance to applications that include piezoelectric sensors and actuators, bionic systems, soft robots and artificial muscles. Any progress to advance such advanced functions requires control on the hierarchical structure of wood as well as the multiscale and multicomponent interactions affecting its elasticity and compressibility. Herein, we review the key structural features, from the molecular to the macroscopic levels, that define wood elasticity and compressibility. They relate to the assembly pattern of wood’s lignocellulosic components, corresponding helical arrangement in the cell wall, and the anisotropy that controls the elastic and compression properties. We summarize the research progress achieved so far in the area, exploring the origins and feasible routes to modulate wood compressibility. Finally, we provide critical perspective on future impact of the area along with new applications of wood-based structures that take advantages of their latent elasticity.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101354"},"PeriodicalIF":33.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001233/pdfft?md5=6970964b05aea30c6f02b4120d770e9c&pid=1-s2.0-S0079642524001233-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524001233","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The typical strength of wood makes it suitable as a structural material. Under load, natural wood exhibits a small strain within the elastic range. Such elasticity is associated with fast recovery materials, which hold relevance to applications that include piezoelectric sensors and actuators, bionic systems, soft robots and artificial muscles. Any progress to advance such advanced functions requires control on the hierarchical structure of wood as well as the multiscale and multicomponent interactions affecting its elasticity and compressibility. Herein, we review the key structural features, from the molecular to the macroscopic levels, that define wood elasticity and compressibility. They relate to the assembly pattern of wood’s lignocellulosic components, corresponding helical arrangement in the cell wall, and the anisotropy that controls the elastic and compression properties. We summarize the research progress achieved so far in the area, exploring the origins and feasible routes to modulate wood compressibility. Finally, we provide critical perspective on future impact of the area along with new applications of wood-based structures that take advantages of their latent elasticity.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.