Exploring the Optoelectronic and Photovoltaic Characteristics of Lead-Free Cs2TiBr6 Double Perovskite Solar Cells: A DFT and SCAPS-1D Investigations

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Khalid Hossain, Sahjahan Islam, M. Najmus Sakib, M. Shihab Uddin, Gazi F. I. Toki, Mirza H. K. Rubel, Jahanara Nasrin, Sara H. Shahatha, M. R. Mohammad, Asma A. Alothman, Chaitany Jayprakash Raorane, Rajesh Haldhar, Hichem Bencherif
{"title":"Exploring the Optoelectronic and Photovoltaic Characteristics of Lead-Free Cs2TiBr6 Double Perovskite Solar Cells: A DFT and SCAPS-1D Investigations","authors":"M. Khalid Hossain,&nbsp;Sahjahan Islam,&nbsp;M. Najmus Sakib,&nbsp;M. Shihab Uddin,&nbsp;Gazi F. I. Toki,&nbsp;Mirza H. K. Rubel,&nbsp;Jahanara Nasrin,&nbsp;Sara H. Shahatha,&nbsp;M. R. Mohammad,&nbsp;Asma A. Alothman,&nbsp;Chaitany Jayprakash Raorane,&nbsp;Rajesh Haldhar,&nbsp;Hichem Bencherif","doi":"10.1002/aelm.202400348","DOIUrl":null,"url":null,"abstract":"<p>In recent times, the remarkable advancements achieved in the field of perovskite solar cells (PSCs) have sparked significant research efforts aimed at enhancing their overall performance because of their exceptional optoelectronic properties. Due to the toxicity of lead (Pb), the emergence of Ti-based (Cs<sub>2</sub>TiBr<sub>6</sub>) double-halide PSCs is regarded as a good alternative to Pb-based PSCs. Here, density functional theory (DFT) calculations are performed to examine the prospect of Cs<sub>2</sub>TiBr<sub>6</sub> perovskite as a layer of absorber for photovoltaic cells (SCs). These computations looked at the material's structural, optical, and electrical characteristics. The density of states (DOS) results demonstrate strong conductivity, principally provided by the 4p states of Br, whilst Ti-3d and Cs-5p orbital electrons offer insignificant contributions. The electronic band structure discloses a direct band gap of 1.534 eV. The covalent connections that exist between Ti and Br atoms and the robust electronic charge density around the Ti atom both demonstrate a significant buildup of electronic charge along the 100 planes. The dielectric function and the coefficient of absorption have significance irrespective of lower energies because it is extremely valuable for solar energy applications. The UV absorption peaks of Cs<sub>2</sub>TiBr<sub>6</sub> have a maximum of ≈15.51 eV and are magnified with photon energy up to 2.46 eV, indicating that it may have potential for solar applications. This work also investigated a good combination of the hole transport layer (HTL) and electron transport layer (ETL) with the Cs<sub>2</sub>TiBr<sub>6</sub> absorber layer. AZnO, Nb<sub>2</sub>O<sub>5</sub>, LBSO, and Zn<sub>2</sub>SnO<sub>4</sub> are executed as the ETLs, and MoO<sub>3</sub>, CuAlO<sub>2</sub>, MEH-PPV, ZnTe, CNTS, GaAs, MoS<sub>2</sub>, PTAA, Cu<sub>2</sub>Te, Zn<sub>3</sub>P<sub>2</sub> are considered as the HTLs to identify the best HTL/Cs<sub>2</sub>TiBr<sub>6</sub>/ETL combinations using the SCAPS-1D numerical simulation. Among all configurations, ITO/LBSO/Cs<sub>2</sub>TiBr<sub>6</sub>/CNTS/Au is examined as the best-optimized structure of Ti-based PSC, with <i>J<sub>SC</sub></i> of 26.63 mA cm<sup>−2</sup>, a <i>V<sub>OC</sub></i> of 1.123 V, <i>FF</i> of 82.94%, and a power conversion efficiency of 24.82%. To validate the findings, PV parameters like the effect of generation rate, recombination rate, J−V, and Q-E characteristics are evaluated. The effect of series and shunt resistance and structure working temperature are explored to observe the effect of these on PSC devices. The accomplished outcomes suggest that Cs<sub>2</sub>TiBr<sub>6</sub> can be viewed as an optimistic material for PSCs for its higher stability and environment-friendly characteristics.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 2","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400348","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202400348","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent times, the remarkable advancements achieved in the field of perovskite solar cells (PSCs) have sparked significant research efforts aimed at enhancing their overall performance because of their exceptional optoelectronic properties. Due to the toxicity of lead (Pb), the emergence of Ti-based (Cs2TiBr6) double-halide PSCs is regarded as a good alternative to Pb-based PSCs. Here, density functional theory (DFT) calculations are performed to examine the prospect of Cs2TiBr6 perovskite as a layer of absorber for photovoltaic cells (SCs). These computations looked at the material's structural, optical, and electrical characteristics. The density of states (DOS) results demonstrate strong conductivity, principally provided by the 4p states of Br, whilst Ti-3d and Cs-5p orbital electrons offer insignificant contributions. The electronic band structure discloses a direct band gap of 1.534 eV. The covalent connections that exist between Ti and Br atoms and the robust electronic charge density around the Ti atom both demonstrate a significant buildup of electronic charge along the 100 planes. The dielectric function and the coefficient of absorption have significance irrespective of lower energies because it is extremely valuable for solar energy applications. The UV absorption peaks of Cs2TiBr6 have a maximum of ≈15.51 eV and are magnified with photon energy up to 2.46 eV, indicating that it may have potential for solar applications. This work also investigated a good combination of the hole transport layer (HTL) and electron transport layer (ETL) with the Cs2TiBr6 absorber layer. AZnO, Nb2O5, LBSO, and Zn2SnO4 are executed as the ETLs, and MoO3, CuAlO2, MEH-PPV, ZnTe, CNTS, GaAs, MoS2, PTAA, Cu2Te, Zn3P2 are considered as the HTLs to identify the best HTL/Cs2TiBr6/ETL combinations using the SCAPS-1D numerical simulation. Among all configurations, ITO/LBSO/Cs2TiBr6/CNTS/Au is examined as the best-optimized structure of Ti-based PSC, with JSC of 26.63 mA cm−2, a VOC of 1.123 V, FF of 82.94%, and a power conversion efficiency of 24.82%. To validate the findings, PV parameters like the effect of generation rate, recombination rate, J−V, and Q-E characteristics are evaluated. The effect of series and shunt resistance and structure working temperature are explored to observe the effect of these on PSC devices. The accomplished outcomes suggest that Cs2TiBr6 can be viewed as an optimistic material for PSCs for its higher stability and environment-friendly characteristics.

Abstract Image

Abstract Image

探索无铅 Cs2TiBr6 双包晶太阳能电池的光电特性:DFT 和 SCAPS-1D 研究
近来,由于包晶体太阳能电池(PSCs)具有卓越的光电特性,该领域取得的显著进步引发了旨在提高其整体性能的大量研究工作。由于铅(Pb)的毒性,钛基(Cs2TiBr6)双卤化物 PSCs 的出现被认为是 Pb 基 PSCs 的良好替代品。本文通过密度泛函理论(DFT)计算研究了 Cs2TiBr6 包晶作为光伏电池(SC)吸收层的前景。这些计算考察了材料的结构、光学和电学特性。状态密度(DOS)结果表明,该材料具有很强的导电性,主要由 Br 的 4p 态提供,而 Ti-3d 和 Cs-5p 轨道电子的贡献微不足道。电子带结构显示直接带隙为 1.534 eV。Ti 原子和 Br 原子间的共价连接以及 Ti 原子周围强大的电子电荷密度都表明电子电荷沿着 100 平面大量聚集。介电常数和吸收系数无论能量多低都具有重要意义,因为它在太阳能应用方面极具价值。Cs2TiBr6 的紫外吸收峰最大值≈15.51 eV,并随光子能量的增加而放大,最高可达 2.46 eV,这表明它可能具有太阳能应用的潜力。这项工作还研究了空穴传输层(HTL)和电子传输层(ETL)与 Cs2TiBr6 吸收层的良好结合。采用 SCAPS-1D 数值模拟,将 AZnO、Nb2O5、LBSO 和 Zn2SnO4 作为 ETL,MoO3、CuAlO2、MEH-PPV、ZnTe、CNTS、GaAs、MoS2、PTAA、Cu2Te、Zn3P2 作为 HTL,以确定最佳 HTL/Cs2TiBr6/ETL 组合。在所有配置中,ITO/LBSO/Cs2TiBr6/CNTS/Au 被认为是钛基 PSC 的最佳优化结构,其 JSC 为 26.63 mA cm-2,VOC 为 1.123 V,FF 为 82.94%,功率转换效率为 24.82%。为验证研究结果,对发电率、重组率、J-V 和 Q-E 特性的影响等光伏参数进行了评估。此外,还探讨了串联和并联电阻以及结构工作温度对 PSC 器件的影响。研究结果表明,Cs2TiBr6 具有更高的稳定性和环境友好特性,可被视为 PSC 的理想材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信