{"title":"Stochastic-Binary Hybrid Spatial Coding Multiplier for Convolutional Neural Network Accelerator","authors":"Yakun Zhou;Jiajun Yan;Yizhuo Zhou;Ziyang Shao;Jienan Chen","doi":"10.1109/TNANO.2024.3444278","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks have remarkable performance in artificial intelligence, although at the cost of computationally demanding processes within a single inference. Simultaneously, the underlying chip process is reaching its constraints as Moore's law diminishes. Stochastic computation, as a hardware-friendly and unconventional approach, can alleviate the burden of sophisticated arithmetic at the circuit level. This work presents a novel stochastic computing (SC) multiplier that employs an extension-uniform approach to create bit sequences without relying on logical gates. In addition, we propose a stochastic-binary domain arithmetic method to achieve low-cost hardware implementation and low power dissipation. The 4n-bit widths are partitioned into n 4-bit widths, with the high-precision components executed in the binary domain and the low-precision components executed in the stochastic domain. Additionally, a hardware-compatible circuit for compensating faults is also introduced. The accelerator on cifar10 using stochastic binary hybrid domain spatial coding (SHSC) multiplier achieves better performance than the fixed-point counterpart, with a 33.7% reduction in area and 23% reduction in power.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"600-605"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10637746/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional neural networks have remarkable performance in artificial intelligence, although at the cost of computationally demanding processes within a single inference. Simultaneously, the underlying chip process is reaching its constraints as Moore's law diminishes. Stochastic computation, as a hardware-friendly and unconventional approach, can alleviate the burden of sophisticated arithmetic at the circuit level. This work presents a novel stochastic computing (SC) multiplier that employs an extension-uniform approach to create bit sequences without relying on logical gates. In addition, we propose a stochastic-binary domain arithmetic method to achieve low-cost hardware implementation and low power dissipation. The 4n-bit widths are partitioned into n 4-bit widths, with the high-precision components executed in the binary domain and the low-precision components executed in the stochastic domain. Additionally, a hardware-compatible circuit for compensating faults is also introduced. The accelerator on cifar10 using stochastic binary hybrid domain spatial coding (SHSC) multiplier achieves better performance than the fixed-point counterpart, with a 33.7% reduction in area and 23% reduction in power.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.