The promise of machine learning approaches to capture cellular senescence heterogeneity

IF 17 Q1 CELL BIOLOGY
Imanol Duran, Cleo L. Bishop, Jesús Gil, Ryan Wallis
{"title":"The promise of machine learning approaches to capture cellular senescence heterogeneity","authors":"Imanol Duran, Cleo L. Bishop, Jesús Gil, Ryan Wallis","doi":"10.1038/s43587-024-00703-2","DOIUrl":null,"url":null,"abstract":"The identification of senescent cells is a long-standing unresolved challenge, owing to their intrinsic heterogeneity and the lack of universal markers. In this Comment, we discuss the recent advent of machine-learning-based approaches to identifying senescent cells by using unbiased, multiparameter morphological assessments, and how these tools can assist future senescence research.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"4 9","pages":"1167-1170"},"PeriodicalIF":17.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-024-00703-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of senescent cells is a long-standing unresolved challenge, owing to their intrinsic heterogeneity and the lack of universal markers. In this Comment, we discuss the recent advent of machine-learning-based approaches to identifying senescent cells by using unbiased, multiparameter morphological assessments, and how these tools can assist future senescence research.

Abstract Image

Abstract Image

机器学习方法捕捉细胞衰老异质性的前景。
由于衰老细胞固有的异质性和缺乏通用标记,识别衰老细胞是一项长期悬而未决的挑战。在这篇评论中,我们将讨论最近出现的基于机器学习的方法,通过使用无偏见的多参数形态学评估来识别衰老细胞,以及这些工具如何帮助未来的衰老研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信