{"title":"The role of NMR spectroscopy in lignocellulosic biomass characterisation: A mini review","authors":"Jelena Parlov Vuković , Marina Tišma","doi":"10.1016/j.fochms.2024.100219","DOIUrl":null,"url":null,"abstract":"<div><p>Lignocellulosic biomass (LB) is promising feedstock for the production of various bio-based products. However, due to its heterogenous character, complex chemical structure and recalcitrance, it is necessary to know its structural composition in order to optimize pretreatment process and further (bio)conversion into bio-based products. Nuclear Magnetic Resonance (NMR) spectroscopy is a fast and reliable method that can provide advanced data on the molecular architecture and composition of lignocellulosic biomass. In this brief overview, characteristic examples of the use of high-resolution NMR spectroscopy for the investigation of various types of LB and their structural units are given and the main drawbacks and future perspectives are outlined.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100219"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666566224000261/pdfft?md5=6116ef4cbd54df7d9976e0bbfab82b26&pid=1-s2.0-S2666566224000261-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566224000261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lignocellulosic biomass (LB) is promising feedstock for the production of various bio-based products. However, due to its heterogenous character, complex chemical structure and recalcitrance, it is necessary to know its structural composition in order to optimize pretreatment process and further (bio)conversion into bio-based products. Nuclear Magnetic Resonance (NMR) spectroscopy is a fast and reliable method that can provide advanced data on the molecular architecture and composition of lignocellulosic biomass. In this brief overview, characteristic examples of the use of high-resolution NMR spectroscopy for the investigation of various types of LB and their structural units are given and the main drawbacks and future perspectives are outlined.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.