Evaluation of anti-aging and antioxidant properties of a new rose variety, Ever-rose

IF 5.2 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Se Jik Han, Polina Belousova, Sangwoo Kwon, Jihui Jang, Jun Bae Lee, Hyunjae Kim, Gayeon You, Jihyeon Song, Hyejung Mok, Ho Su Ha, So Jeong Bae, In Jin Ha, Min Young Lee, Kyung Sook Kim
{"title":"Evaluation of anti-aging and antioxidant properties of a new rose variety, Ever-rose","authors":"Se Jik Han,&nbsp;Polina Belousova,&nbsp;Sangwoo Kwon,&nbsp;Jihui Jang,&nbsp;Jun Bae Lee,&nbsp;Hyunjae Kim,&nbsp;Gayeon You,&nbsp;Jihyeon Song,&nbsp;Hyejung Mok,&nbsp;Ho Su Ha,&nbsp;So Jeong Bae,&nbsp;In Jin Ha,&nbsp;Min Young Lee,&nbsp;Kyung Sook Kim","doi":"10.1186/s40538-024-00653-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Rose flowers contain active ingredients such as flavonoids and volatile oils and are acknowledged to be good natural resources owing to their anti-aging and antioxidant properties. In this study, we develop four new rose varieties (named <i>Ever-rose</i>) that are fragrant, pest resistant, and easy to grow. Subsequently, we evaluate the properties of <i>Ever-rose</i> and its potential for use in anti-aging products.</p><h3>Methods</h3><p>The chemical composition of <i>Ever-rose</i> was determined using ultra-high-performance liquid chromatography triple time-of-flight mass spectrometry/mass spectrometry. The antioxidant activity of the <i>Ever-rose</i> extract was evaluated using various assays, including superoxide dismutase activity, 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity, and xanthine oxidase activity. The variations in proteolytic matrix metalloproteinase-1 expression, collagen content after ultraviolet (UV) irradiation, and reactive-oxygen-species (ROS) levels after infrared A (IRA) treatment were evaluated. The variations in cell elasticity were assessed via atomic force microscopy.</p><h3>Results</h3><p>The petal extracts of <i>Ever-rose</i> (named ER004(P), ER011(P), ER012(P), and ER015(P)) showed good antioxidant activity. They effectively inhibited UV irradiation-induced MMP-1 expression and IRA irradiation-induced increase in mitochondrial ROS levels. Additionally, they inhibited variations in cell shape and elasticity as aging progressed. In particular, ER011(P) demonstrated the best anti-aging and antioxidant effects.</p><h3>Conclusion</h3><p>The newly developed <i>Ever-rose</i> showed excellent antioxidant and anti-aging effects. In particular, ER011(P) demonstrated the best properties owing to its high antioxidant content. Hence, it exhibits significant potential as a functional cosmetic ingredient.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00653-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00653-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Rose flowers contain active ingredients such as flavonoids and volatile oils and are acknowledged to be good natural resources owing to their anti-aging and antioxidant properties. In this study, we develop four new rose varieties (named Ever-rose) that are fragrant, pest resistant, and easy to grow. Subsequently, we evaluate the properties of Ever-rose and its potential for use in anti-aging products.

Methods

The chemical composition of Ever-rose was determined using ultra-high-performance liquid chromatography triple time-of-flight mass spectrometry/mass spectrometry. The antioxidant activity of the Ever-rose extract was evaluated using various assays, including superoxide dismutase activity, 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity, and xanthine oxidase activity. The variations in proteolytic matrix metalloproteinase-1 expression, collagen content after ultraviolet (UV) irradiation, and reactive-oxygen-species (ROS) levels after infrared A (IRA) treatment were evaluated. The variations in cell elasticity were assessed via atomic force microscopy.

Results

The petal extracts of Ever-rose (named ER004(P), ER011(P), ER012(P), and ER015(P)) showed good antioxidant activity. They effectively inhibited UV irradiation-induced MMP-1 expression and IRA irradiation-induced increase in mitochondrial ROS levels. Additionally, they inhibited variations in cell shape and elasticity as aging progressed. In particular, ER011(P) demonstrated the best anti-aging and antioxidant effects.

Conclusion

The newly developed Ever-rose showed excellent antioxidant and anti-aging effects. In particular, ER011(P) demonstrated the best properties owing to its high antioxidant content. Hence, it exhibits significant potential as a functional cosmetic ingredient.

Graphical Abstract

评估玫瑰新品种 Ever-rose 的抗衰老和抗氧化特性
背景玫瑰花含有黄酮类化合物和挥发油等活性成分,具有抗衰老和抗氧化作用,是公认的良好自然资源。在这项研究中,我们培育了四个玫瑰新品种(命名为 Ever-rose),它们芳香、抗虫害且易于种植。方法采用超高效液相色谱-三重飞行时间质谱法/质谱法测定了 Ever-rose 的化学成分。采用多种检测方法评估了常春藤提取物的抗氧化活性,包括超氧化物歧化酶活性、2,2-二苯基-1-苦基肼自由基清除能力和黄嘌呤氧化酶活性。评估了蛋白水解基质金属蛋白酶-1表达的变化、紫外线(UV)照射后胶原蛋白含量的变化以及红外线A(IRA)处理后活性氧(ROS)水平的变化。结果 常春藤花瓣提取物(命名为 ER004(P)、ER011(P)、ER012(P)和 ER015(P))显示出良好的抗氧化活性。它们能有效抑制紫外线照射诱导的 MMP-1 表达和 IRA 照射诱导的线粒体 ROS 水平的增加。此外,它们还能抑制细胞随着衰老而发生的形状和弹性变化。结论新开发的 Ever-rose 具有出色的抗氧化和抗衰老效果。新开发的 Ever-rose 具有出色的抗氧化和抗衰老效果,尤其是 ER011(P)因其抗氧化剂含量高而表现出最佳特性。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical and Biological Technologies in Agriculture
Chemical and Biological Technologies in Agriculture Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
3.00%
发文量
83
审稿时长
15 weeks
期刊介绍: Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture. This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population. Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信