Haiming Yang , Ying Yuan , Ke Yang , Ning Wang , Xiao Li
{"title":"ELK4 ameliorates cognitive impairment and neuroinflammation induced by obstructive sleep apnea","authors":"Haiming Yang , Ying Yuan , Ke Yang , Ning Wang , Xiao Li","doi":"10.1016/j.brainresbull.2024.111054","DOIUrl":null,"url":null,"abstract":"<div><p>Intermittent hypoxia (IH) in patients with obstructive sleep apnea (OSA) syndrome elicited neuron injury (especially in the hippocampus and cortex), contributing to cognitive dysfunction. This study investigated the effects and clarified the mechanisms of ETS domain-containing protein Elk-4 (ELK4) on the cognitive function and neuroinflammation of mice with IH. Mouse microglia BV2 cells were induced with IH by exposure to fluctuating O<sub>2</sub> concentrations (alternating from 5 % to 21 % every 30 min), and mice with OSA were developed and subjected to lentivirus-mediated gene intervention. ELK4 expression was significantly reduced in IH-induced microglia and brain tissues of mice with OSA. Overexpression of ELK4 attenuated oxidative stress, decreased the pro-inflammatory factors IL-1β, IL-6, and TNF-α, and increased the level of the anti-inflammatory factors IL-10 and TGF-β1, as well as the neuroprotective factor BDNF. ELK4 promoted the transcription of fibronectin type III domain-containing protein 5 (FNDC5) by binding to the promoter of FNDC5. Knockdown of FNDC5 in IH-induced microglia and animals reversed the protective effects of ELK4 on OSA-associated neuroinflammation and cognitive dysfunction. Overall, the results demonstrated that ELK4 overexpression repressed microglial activation by inducing the transcription of FNDC5, thus attenuating neuroinflammation and cognitive dysfunction induced by OSA.</p></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0361923024001886/pdfft?md5=b2917d8cd8edacb0f59b81ab623ea5c8&pid=1-s2.0-S0361923024001886-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024001886","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Intermittent hypoxia (IH) in patients with obstructive sleep apnea (OSA) syndrome elicited neuron injury (especially in the hippocampus and cortex), contributing to cognitive dysfunction. This study investigated the effects and clarified the mechanisms of ETS domain-containing protein Elk-4 (ELK4) on the cognitive function and neuroinflammation of mice with IH. Mouse microglia BV2 cells were induced with IH by exposure to fluctuating O2 concentrations (alternating from 5 % to 21 % every 30 min), and mice with OSA were developed and subjected to lentivirus-mediated gene intervention. ELK4 expression was significantly reduced in IH-induced microglia and brain tissues of mice with OSA. Overexpression of ELK4 attenuated oxidative stress, decreased the pro-inflammatory factors IL-1β, IL-6, and TNF-α, and increased the level of the anti-inflammatory factors IL-10 and TGF-β1, as well as the neuroprotective factor BDNF. ELK4 promoted the transcription of fibronectin type III domain-containing protein 5 (FNDC5) by binding to the promoter of FNDC5. Knockdown of FNDC5 in IH-induced microglia and animals reversed the protective effects of ELK4 on OSA-associated neuroinflammation and cognitive dysfunction. Overall, the results demonstrated that ELK4 overexpression repressed microglial activation by inducing the transcription of FNDC5, thus attenuating neuroinflammation and cognitive dysfunction induced by OSA.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.