{"title":"The influence of cigR gene on the pathogenicity of Salmonella paratyphi A in vitro and in vivo.","authors":"Junlei Yin, Lijun Wang, Ronghua Shen, Jinjiao He, Shaozu Li, Huajian Wang, Zhao Cheng","doi":"10.1093/femsle/fnae067","DOIUrl":null,"url":null,"abstract":"<p><p>Salmonella Paratyphi A is the causative agent of paratyphoid fever A which is a serious threat to human health in many countries. The cigR gene located in Salmonella pathogenicity island 3 is a type III secretion system 2 effector gene. However, the influence of cigR gene on the pathogenicity of Salmonella Paratyphi A remains unclear. Here, a cigR gene deletion mutant of Salmonella Paratyphi A was constructed and its pathogenic changes were also evaluated. It was found that both the growth and biochemical features have not changed after the loss of cigR, but the absence of cigR significantly enhanced the replication and/or survival ability in phorbol-12-myristate-13-acetate (PMA)-differentiated human macrophage THP-1 cells and in mouse; the proliferative activity and apoptosis of PMA-differentiated THP-1 cell were significantly decreased and increased, respectively, after the lack of cigR gene; and the mutant showed increased virulence to a mouse infection model by decreased half-lethal dose (LD50) value and enhanced the proliferation ratio of bacteria in vivo. These results demonstrated that CigR is an anti-virulence factor and plays an important role in the pathogenicity of Salmonella Paratyphi A.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae067","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Salmonella Paratyphi A is the causative agent of paratyphoid fever A which is a serious threat to human health in many countries. The cigR gene located in Salmonella pathogenicity island 3 is a type III secretion system 2 effector gene. However, the influence of cigR gene on the pathogenicity of Salmonella Paratyphi A remains unclear. Here, a cigR gene deletion mutant of Salmonella Paratyphi A was constructed and its pathogenic changes were also evaluated. It was found that both the growth and biochemical features have not changed after the loss of cigR, but the absence of cigR significantly enhanced the replication and/or survival ability in phorbol-12-myristate-13-acetate (PMA)-differentiated human macrophage THP-1 cells and in mouse; the proliferative activity and apoptosis of PMA-differentiated THP-1 cell were significantly decreased and increased, respectively, after the lack of cigR gene; and the mutant showed increased virulence to a mouse infection model by decreased half-lethal dose (LD50) value and enhanced the proliferation ratio of bacteria in vivo. These results demonstrated that CigR is an anti-virulence factor and plays an important role in the pathogenicity of Salmonella Paratyphi A.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.