Nicole E. Szabo , Joshua E. Johnson , Marc J. Brouillette , Jessica E. Goetz
{"title":"Implications of using simplified finite element meshes to identify material parameters of articular cartilage","authors":"Nicole E. Szabo , Joshua E. Johnson , Marc J. Brouillette , Jessica E. Goetz","doi":"10.1016/j.medengphy.2024.104200","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this work was to determine the effects of using simplified finite element (FE) mesh geometry in the process of performing reverse iterative fitting to estimate cartilage material parameters from <em>in situ</em> indentation testing. Six bovine tibial osteochondral explants were indented with sequential 5 % step-strains followed by a 600 s hold while relaxation force was measured. Three sets of porous viscohyperelastic material parameters were estimated for each specimen using reverse iterative fitting of the indentation test with (1) 2D axisymmetric, (2) 3D idealized, and (3) 3D specimen-specific FE meshes. Variable material parameters were identified using the three different meshes, and there were no systematic differences, correlation to basic geometric features, nor distinct patterns of variation based on the type of mesh used. Implementing the three material parameter sets in a separate 3D FE model of 40 % compressive strain produced differences in von Mises stresses and pore pressures up to 25 % and 50 %, respectively. Accurate material parameters are crucial in any FE model, and parameter differences influenced by idealized assumptions in initial material property determination have the potential to alter subsequent FE models in unpredictable ways and hinder the interpretation of their results.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this work was to determine the effects of using simplified finite element (FE) mesh geometry in the process of performing reverse iterative fitting to estimate cartilage material parameters from in situ indentation testing. Six bovine tibial osteochondral explants were indented with sequential 5 % step-strains followed by a 600 s hold while relaxation force was measured. Three sets of porous viscohyperelastic material parameters were estimated for each specimen using reverse iterative fitting of the indentation test with (1) 2D axisymmetric, (2) 3D idealized, and (3) 3D specimen-specific FE meshes. Variable material parameters were identified using the three different meshes, and there were no systematic differences, correlation to basic geometric features, nor distinct patterns of variation based on the type of mesh used. Implementing the three material parameter sets in a separate 3D FE model of 40 % compressive strain produced differences in von Mises stresses and pore pressures up to 25 % and 50 %, respectively. Accurate material parameters are crucial in any FE model, and parameter differences influenced by idealized assumptions in initial material property determination have the potential to alter subsequent FE models in unpredictable ways and hinder the interpretation of their results.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.