{"title":"Perfect integer k-matching, k-factor-critical, and the spectral radius of graphs","authors":"Quanbao Zhang , Dandan Fan","doi":"10.1016/j.laa.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <em>G</em> is <em>k</em>-factor-critical if <span><math><mi>G</mi><mo>−</mo><mi>S</mi></math></span> has a perfect matching for any subset <em>S</em> of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>k</mi></math></span>. An integer <em>k</em>-matching of <em>G</em> is a function <span><math><mi>h</mi><mo>:</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> satisfying <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>Γ</mi><mo>(</mo><mi>v</mi><mo>)</mo></mrow></msub><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>≤</mo><mi>k</mi></math></span> for all <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mi>Γ</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> is the set of edges incident with <em>v</em>. An integer <em>k</em>-matching <em>h</em> of <em>G</em> is called perfect if <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>/</mo><mn>2</mn></math></span>. A graph <em>G</em> has the strong parity property if for every subset <em>S</em> of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> with even size, <em>G</em> has a spanning subgraph <em>F</em> with minimum degree at least one such that <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>2</mn><mo>)</mo></math></span> for all <span><math><mi>v</mi><mo>∈</mo><mi>S</mi></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mo>≡</mo><mn>0</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>2</mn><mo>)</mo></math></span> for all <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>﹨</mo><mi>S</mi></math></span>. In this paper, we provide edge number and spectral conditions for the <em>k</em>-factor-criticality, perfect integer <em>k</em>-matching and strong parity property of a graph, respectively.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003252","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A graph G is k-factor-critical if has a perfect matching for any subset S of with . An integer k-matching of G is a function satisfying for all , where is the set of edges incident with v. An integer k-matching h of G is called perfect if . A graph G has the strong parity property if for every subset S of with even size, G has a spanning subgraph F with minimum degree at least one such that for all and for all . In this paper, we provide edge number and spectral conditions for the k-factor-criticality, perfect integer k-matching and strong parity property of a graph, respectively.
如果对于 V(G) 的任意子集 S,|S|=k,G-S 有一个完美匹配,则图 G 是 k 因子临界图。如果∑e∈E(G)h(e)=k|V(G)|/2,则称 G 的整数 k 匹配为完美匹配。如果对于 V(G) 的每一个偶数大小的子集 S,G 都有一个最小度至少为 1 的跨子图 F,且对于所有 v∈S 的 dF(v)≡1(mod2)和对于所有 u∈V(G)﹨S 的 dF(u)≡0(mod2),则图 G 具有强奇偶性属性。本文分别为图的 k 因子临界、完美整数 k 匹配和强奇偶性属性提供了边数和谱条件。
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.