On the colength sequence of G-graded algebras

IF 1 3区 数学 Q1 MATHEMATICS
Wesley Quaresma Cota , Antonio Ioppolo , Fabrizio Martino , Ana Cristina Vieira
{"title":"On the colength sequence of G-graded algebras","authors":"Wesley Quaresma Cota ,&nbsp;Antonio Ioppolo ,&nbsp;Fabrizio Martino ,&nbsp;Ana Cristina Vieira","doi":"10.1016/j.laa.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>F</em> be a field of characteristic zero and let <em>A</em> be an <em>F</em>-algebra graded by a finite group <em>G</em> of order <em>k</em>. Given a non-negative integer <em>n</em> and a sum <span><math><mi>n</mi><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of <em>k</em> non-negative integers, we associate a <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub></math></span>-module to <em>A</em>, where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>×</mo><mo>⋯</mo><mo>×</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub></math></span>, and we denote its <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub></math></span>-character by <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. In this paper, for all sum <span><math><mi>n</mi><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, we make explicit the decomposition of <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mo>〈</mo><mi>n</mi><mo>〉</mo></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span> for some important <em>G</em>-graded algebras <em>A</em> and we compute the number <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> of irreducibles appearing in all such decompositions. Our main goal is to classify <em>G</em>-graded algebras <em>A</em> such that the sequence <span><math><msubsup><mrow><mi>l</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> is bounded by three.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003264","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let F be a field of characteristic zero and let A be an F-algebra graded by a finite group G of order k. Given a non-negative integer n and a sum n=n1++nk of k non-negative integers, we associate a Sn-module to A, where Sn:=Sn1××Snk, and we denote its Sn-character by χn(A). In this paper, for all sum n=n1++nk, we make explicit the decomposition of χn(A) for some important G-graded algebras A and we compute the number lnG(A) of irreducibles appearing in all such decompositions. Our main goal is to classify G-graded algebras A such that the sequence lnG(A) is bounded by three.

论 G 级代数的长度序列
设 F 是特征为零的域,设 A 是由阶数为 k 的有限群 G 分级的 F 代数。给定一个非负整数 n 和 k 个非负整数的和 n=n1+⋯+nk,我们给 A 关联一个 S〈n〉模,其中 S〈n〉:=Sn1×⋯×Snk,我们用 χ〈n〉-character 表示其 S〈n〉-character。在本文中,对于所有和 n=n1+⋯+nk,我们为一些重要的 G 级代数方程 A 明确了 χ〈n〉(A)的分解,并计算了在所有这些分解中出现的不可约数 lnG(A)。我们的主要目标是对 G 级元组 A 进行分类,使序列 lnG(A) 以三个为界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信