{"title":"Molecular subgraph representation learning based on spatial structure transformer","authors":"Shaoguang Zhang, Jianguang Lu, Xianghong Tang","doi":"10.1007/s40747-024-01602-0","DOIUrl":null,"url":null,"abstract":"<p>In the field of molecular biology, graph representation learning is crucial for molecular structure analysis. However, challenges arise in recognising functional groups and distinguishing isomers due to a lack of spatial structure information. To address these problems, we design a novel graph representation learning method based on a spatial structure information extraction Transformer (SSET). The SSET model comprises the Edge Feature Fusion Subgraph Spatial Structure Extractor (ETSE) module and the Positional Information Encoding Graph Transformer (PEGT) module. The ETSE module extracts spatial structural information by fusing edge features and generating the most-value subgraph (Mv-subgraph). The PEGT module encodes positional information based on the graph transformer, addressing the indistinguishability problem among nodes with identical features. In addition, the SSET model alleviates the burden of high computational complexity by using subgraph. Experiments on real datasets show that the SSET model, built on the graph transformer, considerably improves graph representation learning.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"29 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01602-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of molecular biology, graph representation learning is crucial for molecular structure analysis. However, challenges arise in recognising functional groups and distinguishing isomers due to a lack of spatial structure information. To address these problems, we design a novel graph representation learning method based on a spatial structure information extraction Transformer (SSET). The SSET model comprises the Edge Feature Fusion Subgraph Spatial Structure Extractor (ETSE) module and the Positional Information Encoding Graph Transformer (PEGT) module. The ETSE module extracts spatial structural information by fusing edge features and generating the most-value subgraph (Mv-subgraph). The PEGT module encodes positional information based on the graph transformer, addressing the indistinguishability problem among nodes with identical features. In addition, the SSET model alleviates the burden of high computational complexity by using subgraph. Experiments on real datasets show that the SSET model, built on the graph transformer, considerably improves graph representation learning.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.