Molecular subgraph representation learning based on spatial structure transformer

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shaoguang Zhang, Jianguang Lu, Xianghong Tang
{"title":"Molecular subgraph representation learning based on spatial structure transformer","authors":"Shaoguang Zhang, Jianguang Lu, Xianghong Tang","doi":"10.1007/s40747-024-01602-0","DOIUrl":null,"url":null,"abstract":"<p>In the field of molecular biology, graph representation learning is crucial for molecular structure analysis. However, challenges arise in recognising functional groups and distinguishing isomers due to a lack of spatial structure information. To address these problems, we design a novel graph representation learning method based on a spatial structure information extraction Transformer (SSET). The SSET model comprises the Edge Feature Fusion Subgraph Spatial Structure Extractor (ETSE) module and the Positional Information Encoding Graph Transformer (PEGT) module. The ETSE module extracts spatial structural information by fusing edge features and generating the most-value subgraph (Mv-subgraph). The PEGT module encodes positional information based on the graph transformer, addressing the indistinguishability problem among nodes with identical features. In addition, the SSET model alleviates the burden of high computational complexity by using subgraph. Experiments on real datasets show that the SSET model, built on the graph transformer, considerably improves graph representation learning.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"29 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01602-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of molecular biology, graph representation learning is crucial for molecular structure analysis. However, challenges arise in recognising functional groups and distinguishing isomers due to a lack of spatial structure information. To address these problems, we design a novel graph representation learning method based on a spatial structure information extraction Transformer (SSET). The SSET model comprises the Edge Feature Fusion Subgraph Spatial Structure Extractor (ETSE) module and the Positional Information Encoding Graph Transformer (PEGT) module. The ETSE module extracts spatial structural information by fusing edge features and generating the most-value subgraph (Mv-subgraph). The PEGT module encodes positional information based on the graph transformer, addressing the indistinguishability problem among nodes with identical features. In addition, the SSET model alleviates the burden of high computational complexity by using subgraph. Experiments on real datasets show that the SSET model, built on the graph transformer, considerably improves graph representation learning.

Abstract Image

基于空间结构转换器的分子子图表示学习
在分子生物学领域,图表示学习对分子结构分析至关重要。然而,由于缺乏空间结构信息,在识别官能团和区分同分异构体方面存在挑战。为了解决这些问题,我们设计了一种基于空间结构信息提取转换器(SSET)的新型图表示学习方法。SSET 模型由边缘特征融合子图空间结构提取器(ETSE)模块和位置信息编码图转换器(PEGT)模块组成。ETSE 模块通过融合边缘特征并生成最大值子图(Mv-子图)来提取空间结构信息。PEGT 模块根据图变换器对位置信息进行编码,解决了具有相同特征的节点之间的不可区分性问题。此外,SSET 模型通过使用子图减轻了计算复杂度高的负担。在真实数据集上的实验表明,建立在图变换器基础上的 SSET 模型极大地改进了图表示学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信