A novel characteristic curve for thermoelectric cooler application in realistic thermal circumstances: Theory and experiment

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hongkun Li , Xiang Liu , Jingxuan Wang , Weidong Zheng , Weiqun Liu , Qiao Zhu
{"title":"A novel characteristic curve for thermoelectric cooler application in realistic thermal circumstances: Theory and experiment","authors":"Hongkun Li ,&nbsp;Xiang Liu ,&nbsp;Jingxuan Wang ,&nbsp;Weidong Zheng ,&nbsp;Weiqun Liu ,&nbsp;Qiao Zhu","doi":"10.1016/j.mtphys.2024.101534","DOIUrl":null,"url":null,"abstract":"<div><p>On the materials level, the performance of thermoelectric (TE) devices can be defined by the thermoelectric figure of merit (<em>zT</em>). This, however, does not provide a complete picture due to the complex interplay between electronic and thermal transport properties and the uncertain thermal impedance matching between external and internal thermal resistances in different realistic thermal circumstances. Appropriate design of individual material properties and geometry parameters considering the realistic thermal circumstance can greatly enhance the device-level performance of TE devices. In this work, we develop a framework to clarify such interactions in thermoelectric coolers (TEC) with a newly proposed <em>q-h</em> characteristic curve, which can be used to identify how a TEC design is of effectiveness for a specific realistic thermal circumstance. The effects of <em>zT</em>, the individual TE material properties (i.e., thermal conductivity <em>k</em>, electrical conductivity σ and Seebeck coefficient S) as well as the geometry parameters (i.e., pillar height and filling factor) on the <em>q-h</em> characteristic curve are theoretically and experimentally investigated, respectively. TEC modules with higher <em>zT</em>, short pillars and high filling factor show stronger capability to handle high heat flux load, especially for the cases with high heat dissipation coefficient at hot side. The thermal property (<em>k</em>) and electrical properties (σ and S) are responsible for the low heat flux load (e.g., wearable TEC) and high heat flux load (e.g., on-chip TEC cooling), respectively. For wearable TEC, increasing the internal thermal resistance can prevent the back flow heat, which can be achieved with tall pillars, low filling factor and optimizing <em>zT</em> towards lowering thermal conductivity <em>k</em>. For on-chip TEC cooling, reducing the Joule heating and increasing the thermoelectric effect become dominant factors in lowering the code-side temperature of TEC modules. This can be achieved with short pillars, high filling factor and optimizing <em>zT</em> towards increasing the power factor <em>S</em><sup><em>2</em></sup>σ. This work provides significant insights into the complex interplay between material-level properties, device-level parameters and the external thermal circumstance in determining the performance of TEC devices. The results enable researchers to design optimal TEC devices for realistic applications with different boundary conditions.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"47 ","pages":"Article 101534"},"PeriodicalIF":10.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002104","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

On the materials level, the performance of thermoelectric (TE) devices can be defined by the thermoelectric figure of merit (zT). This, however, does not provide a complete picture due to the complex interplay between electronic and thermal transport properties and the uncertain thermal impedance matching between external and internal thermal resistances in different realistic thermal circumstances. Appropriate design of individual material properties and geometry parameters considering the realistic thermal circumstance can greatly enhance the device-level performance of TE devices. In this work, we develop a framework to clarify such interactions in thermoelectric coolers (TEC) with a newly proposed q-h characteristic curve, which can be used to identify how a TEC design is of effectiveness for a specific realistic thermal circumstance. The effects of zT, the individual TE material properties (i.e., thermal conductivity k, electrical conductivity σ and Seebeck coefficient S) as well as the geometry parameters (i.e., pillar height and filling factor) on the q-h characteristic curve are theoretically and experimentally investigated, respectively. TEC modules with higher zT, short pillars and high filling factor show stronger capability to handle high heat flux load, especially for the cases with high heat dissipation coefficient at hot side. The thermal property (k) and electrical properties (σ and S) are responsible for the low heat flux load (e.g., wearable TEC) and high heat flux load (e.g., on-chip TEC cooling), respectively. For wearable TEC, increasing the internal thermal resistance can prevent the back flow heat, which can be achieved with tall pillars, low filling factor and optimizing zT towards lowering thermal conductivity k. For on-chip TEC cooling, reducing the Joule heating and increasing the thermoelectric effect become dominant factors in lowering the code-side temperature of TEC modules. This can be achieved with short pillars, high filling factor and optimizing zT towards increasing the power factor S2σ. This work provides significant insights into the complex interplay between material-level properties, device-level parameters and the external thermal circumstance in determining the performance of TEC devices. The results enable researchers to design optimal TEC devices for realistic applications with different boundary conditions.

在现实热环境中应用热电冷却器的新型特性曲线:理论与实验
在材料层面,热电(TE)器件的性能可以用热电功勋值(zT)来定义。然而,由于电子和热传输特性之间复杂的相互作用,以及在不同实际热环境下外部和内部热阻之间不确定的热阻匹配,这并不能提供完整的信息。考虑到现实热环境,对单个材料特性和几何参数进行适当设计,可大大提高 TE 器件的器件级性能。在这项工作中,我们利用新提出的 q-h 特性曲线开发了一个框架,以阐明热电半导体制冷片(TEC)中的这种相互作用,该曲线可用于确定热电半导体制冷片设计在特定实际热环境下的有效性。理论和实验分别研究了 zT、单个热电半导体制冷片材料特性(即热导率 k、电导率 σ 和塞贝克系数 S)以及几何参数(即支柱高度和填充系数)对 q-h 特性曲线的影响。具有较高 zT、短支柱和高填充系数的 TEC 模块显示出较强的处理高热通量负载的能力,尤其是在热侧散热系数较高的情况下。热特性(k)和电特性(σ 和 S)分别对低热通量负载(如可穿戴式 TEC)和高热通量负载(如片上 TEC 冷却)负责。对于可穿戴式 TEC,增加内部热阻可以防止热量回流,这可以通过高支柱、低填充系数和优化 zT 以降低热导率 k 来实现。对于片上 TEC 冷却,减少焦耳热和增加热电效应成为降低 TEC 模块代码端温度的主要因素。这可以通过短支柱、高填充系数和优化 zT 以提高功率因数 S2σ 来实现。这项研究深入揭示了决定 TEC 器件性能的材料级特性、器件级参数和外部热环境之间复杂的相互作用。这些结果使研究人员能够针对具有不同边界条件的实际应用设计出最佳的 TEC 器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信