Nonassociative algebras of biderivation-type

IF 1 3区 数学 Q1 MATHEMATICS
Saïd Benayadi , Hassan Oubba
{"title":"Nonassociative algebras of biderivation-type","authors":"Saïd Benayadi ,&nbsp;Hassan Oubba","doi":"10.1016/j.laa.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>The main purpose of this paper is to study the class of Lie-admissible algebras <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mo>.</mo><mo>)</mo></math></span> such that its product is a biderivation of the Lie algebra <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mo>[</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>]</mo><mo>)</mo></math></span>, where <span><math><mo>[</mo><mspace></mspace><mo>,</mo><mspace></mspace><mo>]</mo></math></span> is the commutator of the algebra <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mo>.</mo><mo>)</mo></math></span>. First, we provide characterizations of algebras in this class. Furthermore, we show that this class of nonassociative algebras includes Lie algebras, symmetric Leibniz algebras, Lie-admissible left (or right) Leibniz algebras, Milnor algebras, and LR-algebras. Then, we establish results on the structure of these algebras in the case that the underlying Lie algebras are perfect (in particular, semisimple Lie algebras). In addition, we then study flexible <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>B</mi><mi>D</mi></mrow></msub></math></span>-algebras, showing in particular that these algebras are extensions of Lie algebras in the category of flexible <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>B</mi><mi>D</mi></mrow></msub></math></span>-algebras. Finally, we study left-symmetric <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>B</mi><mi>D</mi></mrow></msub></math></span>-algebras, in particular we are interested in flat pseudo-Euclidean Lie algebras where the associated Levi-Civita products define <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>B</mi><mi>D</mi></mrow></msub></math></span>-algebras on the underlying vector spaces of these Lie algebras. In addition, we obtain an inductive description of all these Lie algebras and their Levi-Civita products (in particular, for all signatures in the case of real Lie algebras).</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003239","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The main purpose of this paper is to study the class of Lie-admissible algebras (A,.) such that its product is a biderivation of the Lie algebra (A,[,]), where [,] is the commutator of the algebra (A,.). First, we provide characterizations of algebras in this class. Furthermore, we show that this class of nonassociative algebras includes Lie algebras, symmetric Leibniz algebras, Lie-admissible left (or right) Leibniz algebras, Milnor algebras, and LR-algebras. Then, we establish results on the structure of these algebras in the case that the underlying Lie algebras are perfect (in particular, semisimple Lie algebras). In addition, we then study flexible ABD-algebras, showing in particular that these algebras are extensions of Lie algebras in the category of flexible ABD-algebras. Finally, we study left-symmetric ABD-algebras, in particular we are interested in flat pseudo-Euclidean Lie algebras where the associated Levi-Civita products define ABD-algebras on the underlying vector spaces of these Lie algebras. In addition, we obtain an inductive description of all these Lie algebras and their Levi-Civita products (in particular, for all signatures in the case of real Lie algebras).

双活化型非关联代数
本文的主要目的是研究类列可容许代数(A,.),使得它的乘积是列代数(A,[,])的双分化,其中[,]是代数(A,.)的换元。首先,我们提供了这一类代数的特征。此外,我们还证明了这一类非关联代数包括李代数、对称莱布尼兹代数、李容许左(或右)莱布尼兹代数、米尔诺代数和 LR-代数。然后,我们建立了在底层李代数是完备的(尤其是半简单李代数)情况下这些代数的结构结果。此外,我们还研究了柔性 ABD-代数,特别表明这些代数是柔性 ABD-代数范畴中列代数的扩展。最后,我们研究了左对称 ABD-数,特别是我们对平面伪欧几里得李代数感兴趣,在平面伪欧几里得李代数中,相关的 Levi-Civita 乘积定义了这些李代数底层向量空间上的 ABD-数。此外,我们还获得了所有这些李代数及其 Levi-Civita 乘的归纳描述(特别是实李代数中的所有符号)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信