Eigenvalue bounds of the Kirchhoff Laplacian

IF 1 3区 数学 Q1 MATHEMATICS
Oliver Knill
{"title":"Eigenvalue bounds of the Kirchhoff Laplacian","authors":"Oliver Knill","doi":"10.1016/j.laa.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the inequality <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> for all the eigenvalues <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of the Kirchhoff matrix <em>K</em> of a finite simple graph or quiver with vertex degrees <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and assuming <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span>. Without multiple connections, the inequality <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≥</mo><mrow><mi>max</mi></mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>)</mo></math></span> holds. A consequence in the finite simple graph or multi-graph case is that the pseudo determinant <span><math><mrow><mi>Det</mi></mrow><mo>(</mo><mi>K</mi><mo>)</mo></math></span> counting the number of rooted spanning trees has an upper bound <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> and that <span><math><mrow><mi>det</mi></mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>K</mi><mo>)</mo></math></span> counting the number of rooted spanning forests has an upper bound <span><math><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><mn>1</mn><mo>+</mo><mn>2</mn><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952400315X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the inequality λkdk+dk1 for all the eigenvalues λ1λ2λn of the Kirchhoff matrix K of a finite simple graph or quiver with vertex degrees d1d2dn and assuming d0=0. Without multiple connections, the inequality λkmax(0,dk(nk)) holds. A consequence in the finite simple graph or multi-graph case is that the pseudo determinant Det(K) counting the number of rooted spanning trees has an upper bound 2nk=1ndk and that det(1+K) counting the number of rooted spanning forests has an upper bound k=1n(1+2dk).

基尔霍夫拉普拉斯函数的特征值边界
对于顶点度为 d1≤d2≤⋯≤λn 并假设 d0=0 的有限简单图或四维图的基尔霍夫矩阵 K 的所有特征值,我们证明了不等式 λk≤dk+dk-1 。在没有多重连接的情况下,不等式 λk≥max(0,dk-(n-k)) 成立。有限简单图或多图情况下的一个结果是,计算有根生成树数量的伪行列式 Det(K) 的上限为 2n∏k=1ndk,而计算有根生成林数量的 Det(1+K) 的上限为 ∏k=1n(1+2dk)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信