Shangkun Liu, Minghao Zou, Ning Liu, Yanxin Li, Weimin Zheng
{"title":"A teacher-guided early-learning method for medical image segmentation from noisy labels","authors":"Shangkun Liu, Minghao Zou, Ning Liu, Yanxin Li, Weimin Zheng","doi":"10.1007/s40747-024-01574-1","DOIUrl":null,"url":null,"abstract":"<p>The success of current deep learning models depends on a large number of precise labels. However, in the field of medical image segmentation, acquiring precise labels is labor-intensive and time-consuming. Hence, the challenge of achieving a high-performance model via datasets containing noisy labels has attracted significant research interest. Some existing methods are unable to exclude samples containing noisy labels and some methods still have high requirements on datasets. To solve this problem, we propose a noisy label learning method for medical image segmentation using a mixture of high and low quality labels based on the architecture of mean teacher. Firstly, considering the teacher model’s capacity to aggregate all previously learned information following each training step, we propose to leverage a teacher model to correct noisy label adaptively during the training phase. Secondly, to enhance the model’s robustness, we propose to infuse feature perturbations into the student model. This strategy aims to bolster the model’s ability to handle variations in input data and improve its resilience to noisy labels. Finally, we simulate noisy labels by destroying labels in two medical image datasets: the Automated Cardiac Diagnosis Challenge (ACDC) dataset and the 3D Left Atrium (LA) dataset. Experiments show that the proposed method demonstrates considerable effectiveness. With a noisy ratio of 0.8, compared with other methods, the mean Dice score of our proposed method is improved by 2.58% and 0.31% on ACDC and LA datasets, respectively.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"17 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01574-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The success of current deep learning models depends on a large number of precise labels. However, in the field of medical image segmentation, acquiring precise labels is labor-intensive and time-consuming. Hence, the challenge of achieving a high-performance model via datasets containing noisy labels has attracted significant research interest. Some existing methods are unable to exclude samples containing noisy labels and some methods still have high requirements on datasets. To solve this problem, we propose a noisy label learning method for medical image segmentation using a mixture of high and low quality labels based on the architecture of mean teacher. Firstly, considering the teacher model’s capacity to aggregate all previously learned information following each training step, we propose to leverage a teacher model to correct noisy label adaptively during the training phase. Secondly, to enhance the model’s robustness, we propose to infuse feature perturbations into the student model. This strategy aims to bolster the model’s ability to handle variations in input data and improve its resilience to noisy labels. Finally, we simulate noisy labels by destroying labels in two medical image datasets: the Automated Cardiac Diagnosis Challenge (ACDC) dataset and the 3D Left Atrium (LA) dataset. Experiments show that the proposed method demonstrates considerable effectiveness. With a noisy ratio of 0.8, compared with other methods, the mean Dice score of our proposed method is improved by 2.58% and 0.31% on ACDC and LA datasets, respectively.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.