Peter Walker Ferguson;Jianwei Sun;Ji Ma;Joel Perry;Jacob Rosen
{"title":"On the OTHER Hand: A Bilateral, Reconfigurable Hand Exoskeleton With Opposable Thumbs for Use With Upper Limb Exoskeletons","authors":"Peter Walker Ferguson;Jianwei Sun;Ji Ma;Joel Perry;Jacob Rosen","doi":"10.1109/TMRB.2024.3421513","DOIUrl":null,"url":null,"abstract":"This study aims to document the design of the OTHER Hand: a novel bilateral, reconfigurable, hand exoskeleton with opposable thumbs for use with upper limb exoskeletons. Intended for grasp research and rehabilitation with an emphasis on stroke, the OTHER Hand is designed as a one-size-fits-all system that can enable most of the common prehensile grasps and hand postures performed in activities of daily living. The capacity of the system to perform such grasps and postures is experimentally demonstrated by an average 94% normalized Grasping Ability Score across thirteen subjects using the Anthropomorphic Hand Assessment Protocol. This score demonstrates near-unhindered grasping performance for individuals without hand impairments wearing the OTHER Hand.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10587178/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to document the design of the OTHER Hand: a novel bilateral, reconfigurable, hand exoskeleton with opposable thumbs for use with upper limb exoskeletons. Intended for grasp research and rehabilitation with an emphasis on stroke, the OTHER Hand is designed as a one-size-fits-all system that can enable most of the common prehensile grasps and hand postures performed in activities of daily living. The capacity of the system to perform such grasps and postures is experimentally demonstrated by an average 94% normalized Grasping Ability Score across thirteen subjects using the Anthropomorphic Hand Assessment Protocol. This score demonstrates near-unhindered grasping performance for individuals without hand impairments wearing the OTHER Hand.