Dynamical heterogeneity and universality of power-grids

IF 4.8 2区 工程技术 Q2 ENERGY & FUELS
{"title":"Dynamical heterogeneity and universality of power-grids","authors":"","doi":"10.1016/j.segan.2024.101491","DOIUrl":null,"url":null,"abstract":"<div><p>Electric power systems during transient states are extensively investigated using variations of the Kuramoto model to analyze their dynamic behavior. However, the majority of current models fail to capture the physics of power flows and the heterogeneity of the grids under study. This study addresses this gap by comparing the levels of heterogeneity in continent-sized power grids in Europe and North America to reveal the underlying universality and heterogeneity of grid frequencies, electrical parameters, and topological structures. Empirical data analysis of grid frequencies from the Hungarian grid indicates that q-Gaussian distributions best fit simulations, with spatio-temporally correlated noise evident in the frequency spectrum. Comparing European and North American power grids reveals that employing homogeneous transmission capacities to represent power lines can lead to misleading results on stability, and nodal behavior is heterogeneous. Community structures of the continent-sized grids are detected, demonstrating that Chimera states are more likely to occur when studying only subsystems. A topographical analysis of the grids is presented to assist in selecting such subsystems. Finally, synchronization calculations are provided to illustrate the occurrence of Chimera states. The findings underscore the necessity of heterogeneous grid models for dynamic stability analysis of power systems.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352467724002200/pdfft?md5=1c3c18579694aaadb4ac365d0b1dade2&pid=1-s2.0-S2352467724002200-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002200","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Electric power systems during transient states are extensively investigated using variations of the Kuramoto model to analyze their dynamic behavior. However, the majority of current models fail to capture the physics of power flows and the heterogeneity of the grids under study. This study addresses this gap by comparing the levels of heterogeneity in continent-sized power grids in Europe and North America to reveal the underlying universality and heterogeneity of grid frequencies, electrical parameters, and topological structures. Empirical data analysis of grid frequencies from the Hungarian grid indicates that q-Gaussian distributions best fit simulations, with spatio-temporally correlated noise evident in the frequency spectrum. Comparing European and North American power grids reveals that employing homogeneous transmission capacities to represent power lines can lead to misleading results on stability, and nodal behavior is heterogeneous. Community structures of the continent-sized grids are detected, demonstrating that Chimera states are more likely to occur when studying only subsystems. A topographical analysis of the grids is presented to assist in selecting such subsystems. Finally, synchronization calculations are provided to illustrate the occurrence of Chimera states. The findings underscore the necessity of heterogeneous grid models for dynamic stability analysis of power systems.

电网的动态异质性和普遍性
人们广泛使用 Kuramoto 模型的变体来研究瞬态期间的电力系统,以分析其动态行为。然而,目前的大多数模型都无法捕捉电力流的物理特性和所研究电网的异质性。本研究通过比较欧洲和北美大陆规模电网的异质性水平,揭示了电网频率、电气参数和拓扑结构的基本普遍性和异质性,从而弥补了这一不足。对匈牙利电网的电网频率进行的经验数据分析表明,q-高斯分布最适合模拟,频谱中明显存在时空相关的噪声。对欧洲和北美电网进行比较后发现,采用同质输电容量来表示电力线可能会导致误导性的稳定性结果,而且节点行为也是异质的。对各大洲电网的群落结构进行了检测,表明在仅研究子系统时更有可能出现 Chimera 状态。网格的地形分析有助于选择此类子系统。最后,还提供了同步计算,以说明 Chimera 状态的发生。研究结果强调了异构电网模型在电力系统动态稳定性分析中的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy Grids & Networks
Sustainable Energy Grids & Networks Energy-Energy Engineering and Power Technology
CiteScore
7.90
自引率
13.00%
发文量
206
审稿时长
49 days
期刊介绍: Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信