Correlating the electronic structures of β-Ga2O3 to its crystal tilts induced defects at nanoscale

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yi Wei , Zichang Zhang , Chuan Xu , Tao Wang , Yuliang Yao , Jinlong Du , Na Zhao , Engang Fu
{"title":"Correlating the electronic structures of β-Ga2O3 to its crystal tilts induced defects at nanoscale","authors":"Yi Wei ,&nbsp;Zichang Zhang ,&nbsp;Chuan Xu ,&nbsp;Tao Wang ,&nbsp;Yuliang Yao ,&nbsp;Jinlong Du ,&nbsp;Na Zhao ,&nbsp;Engang Fu","doi":"10.1016/j.mtphys.2024.101518","DOIUrl":null,"url":null,"abstract":"<div><p>Crosslinking structural transformation mechanism at nanoscale to the corresponding anisotropically electronic properties is essential to both the atomic-level controlled synthesis and extreme-conditional applications of the ultrawide bandgap semiconductors. Here, we report the first direct observation of bandgap variation at certain microstructural flaws in monoclinic crystal β-Ga<sub>2</sub>O<sub>3</sub> via scanning transmission electron microscopy-electron energy loss spectrum (STEM-EELS) technology with both high energy and spatial resolution. Atomic-scale tilt of the Mosaic blocks relative to [010] zone axis is demonstrated to cause specific point defects accumulation at block boundaries, resulting in the formation of vacancy lines (or clusters) and then the crystal deformation induced flaws. These as-formed tiny Mosaic tilts observed from both in-plane and out-of-plane geometry are correlated to the corresponding electronic structure obtained by density functional calculations, indicating the carrier mobility limits transferred from intrinsic polar optical phonon scattering to the ionized oxygen atoms scattering in the defective monoclinic crystal. These findings provide a new insight on these anisotropic defect formation induced electronic structural variation, paving the way for precise synthesis and development of high-performance ultra-wide bandgap materials.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"46 ","pages":"Article 101518"},"PeriodicalIF":10.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324001949","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Crosslinking structural transformation mechanism at nanoscale to the corresponding anisotropically electronic properties is essential to both the atomic-level controlled synthesis and extreme-conditional applications of the ultrawide bandgap semiconductors. Here, we report the first direct observation of bandgap variation at certain microstructural flaws in monoclinic crystal β-Ga2O3 via scanning transmission electron microscopy-electron energy loss spectrum (STEM-EELS) technology with both high energy and spatial resolution. Atomic-scale tilt of the Mosaic blocks relative to [010] zone axis is demonstrated to cause specific point defects accumulation at block boundaries, resulting in the formation of vacancy lines (or clusters) and then the crystal deformation induced flaws. These as-formed tiny Mosaic tilts observed from both in-plane and out-of-plane geometry are correlated to the corresponding electronic structure obtained by density functional calculations, indicating the carrier mobility limits transferred from intrinsic polar optical phonon scattering to the ionized oxygen atoms scattering in the defective monoclinic crystal. These findings provide a new insight on these anisotropic defect formation induced electronic structural variation, paving the way for precise synthesis and development of high-performance ultra-wide bandgap materials.

Abstract Image

将 β-Ga2O3 的电子结构与其晶体倾斜诱导的纳米级缺陷相关联
将纳米尺度的结构转变机制与相应的各向异性电子特性交联起来,对于超宽带隙半导体的原子级可控合成和极端条件应用都至关重要。在此,我们首次报告了通过扫描透射电子显微镜-电子能量损失谱(STEM-EELS)技术,在高能量和高空间分辨率下,直接观察到单斜晶体β-Ga2O3某些微结构缺陷处的带隙变化。原子尺度的马赛克块相对于[010]区轴线的倾斜被证明会导致特定点缺陷在块边界积累,从而形成空位线(或空位簇),进而导致晶体变形引发缺陷。从平面内和平面外几何角度观察到的这些已形成的微小马赛克倾斜与密度泛函计算得到的相应电子结构相关联,表明载流子迁移极限从缺陷单斜晶体中的固有极性光学声子散射转移到了电离氧原子散射。这些发现为了解这些各向异性缺陷形成诱导的电子结构变化提供了新的视角,为精确合成和开发高性能超宽带隙材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信