{"title":"III-V material-based junction-free L-shaped gate normal line tunneling FET for improved performance","authors":"Aadil Anam, S Intekhab Amin and Dinesh Prasad","doi":"10.1088/1361-6641/ad689d","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel III–V compound material-based junction-free (JF) L-shaped gate normal line tunneling field-effect transistor (III–V JF L GNLTFET) for improved output performance at 0.5 V operation. The key design metric, i.e. JF or junctionless design, in our device eliminates issues like random dopant fluctuations (RDF) and high thermal budgets and streamlines the fabrication. The implementation of III–V compound material, i.e. low bandgap compound GaSb, in the source region, combined with the larger area gate normal line tunneling, improves the ON current for our proposed III–V JF L GNLTFET device. Additionally, the utilization of large bandgap GaAs compounds on the drain and channel sides eliminates ambipolarity and further enhances the performance of our proposed device. Meaning that the proposed device simultaneously improves the ON current and suppresses the ambipolarity. Our proposed III–V JF L GNLTFET exhibits enhanced output performance with an ON current of 23.2 μA μm−1 and a minimum and average subthreshold swing of 3.7 mV dec−1 and 15.82 mV dec−1 respectively. Furthermore, the proposed III–V JF L GNLTFET also gives superior RF/analog performance with transconductance (168.65 μS), cut-off frequency (33.52 GHz), gain-bandwidth product (5.11 GHz), and transconductance-frequency product (243.7 GHz).","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"27 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad689d","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a novel III–V compound material-based junction-free (JF) L-shaped gate normal line tunneling field-effect transistor (III–V JF L GNLTFET) for improved output performance at 0.5 V operation. The key design metric, i.e. JF or junctionless design, in our device eliminates issues like random dopant fluctuations (RDF) and high thermal budgets and streamlines the fabrication. The implementation of III–V compound material, i.e. low bandgap compound GaSb, in the source region, combined with the larger area gate normal line tunneling, improves the ON current for our proposed III–V JF L GNLTFET device. Additionally, the utilization of large bandgap GaAs compounds on the drain and channel sides eliminates ambipolarity and further enhances the performance of our proposed device. Meaning that the proposed device simultaneously improves the ON current and suppresses the ambipolarity. Our proposed III–V JF L GNLTFET exhibits enhanced output performance with an ON current of 23.2 μA μm−1 and a minimum and average subthreshold swing of 3.7 mV dec−1 and 15.82 mV dec−1 respectively. Furthermore, the proposed III–V JF L GNLTFET also gives superior RF/analog performance with transconductance (168.65 μS), cut-off frequency (33.52 GHz), gain-bandwidth product (5.11 GHz), and transconductance-frequency product (243.7 GHz).
期刊介绍:
Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic.
The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including:
fundamental properties
materials and nanostructures
devices and applications
fabrication and processing
new analytical techniques
simulation
emerging fields:
materials and devices for quantum technologies
hybrid structures and devices
2D and topological materials
metamaterials
semiconductors for energy
flexible electronics.