Peyman Ebrahimi, Ipek Bayram, Anna Lante, Eric A. Decker
{"title":"Antioxidant and prooxidant activity of acid-hydrolyzed phenolic extracts of sugar beet leaves in oil-in-water emulsions","authors":"Peyman Ebrahimi, Ipek Bayram, Anna Lante, Eric A. Decker","doi":"10.1002/aocs.12891","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to enhance the oxidative stability of soybean oil-in-water emulsions using acid-hydrolyzed and unhydrolyzed extracts obtained from sugar beet leaves. The optimum extraction process, which includes 8 min of ultrasonication followed by a 2-h acid hydrolysis, released new phenolics (e.g., catechin, myricetin, etc.) and increased the total phenolic content (TPC) from 586.24 ± 11.45 to 982.42 ± 6.61 μmol gallic acid equivalent (GAE)/L, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition from 46.63 ± 1.39 to 60.87 ± 1.12%. Acid hydrolysis increased the cupric chelating activity of the extracts while decreasing ferrous chelating activity and <i>trans</i>-ferulic acid concentration significantly (<i>p</i> < 0.05). The acid-hydrolyzed extract at a TPC of 100 μmol GAE/L prolonged the lag phase of hexanal accumulation in the emulsion from 0 to 8 days, while 400 μmol GAE/L TPC of unhydrolyzed extract increased the lag phase to 12 days. The results show that acid-hydrolyzed extracts in high concentrations may act as prooxidants.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 2","pages":"339-349"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aocs.12891","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12891","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to enhance the oxidative stability of soybean oil-in-water emulsions using acid-hydrolyzed and unhydrolyzed extracts obtained from sugar beet leaves. The optimum extraction process, which includes 8 min of ultrasonication followed by a 2-h acid hydrolysis, released new phenolics (e.g., catechin, myricetin, etc.) and increased the total phenolic content (TPC) from 586.24 ± 11.45 to 982.42 ± 6.61 μmol gallic acid equivalent (GAE)/L, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition from 46.63 ± 1.39 to 60.87 ± 1.12%. Acid hydrolysis increased the cupric chelating activity of the extracts while decreasing ferrous chelating activity and trans-ferulic acid concentration significantly (p < 0.05). The acid-hydrolyzed extract at a TPC of 100 μmol GAE/L prolonged the lag phase of hexanal accumulation in the emulsion from 0 to 8 days, while 400 μmol GAE/L TPC of unhydrolyzed extract increased the lag phase to 12 days. The results show that acid-hydrolyzed extracts in high concentrations may act as prooxidants.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.