Circular Architecture for Excellent Uniformity in Amorphous Indium–Gallium–Zinc-Oxide Thin-Film Transistors

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yanqin Zhang;Xufan Li;Jianwei Zhang;Zhenzhong Yang;Jiawei Wang;Lingfei Wang;Mengmeng Li;Ling Li;Ming Liu
{"title":"Circular Architecture for Excellent Uniformity in Amorphous Indium–Gallium–Zinc-Oxide Thin-Film Transistors","authors":"Yanqin Zhang;Xufan Li;Jianwei Zhang;Zhenzhong Yang;Jiawei Wang;Lingfei Wang;Mengmeng Li;Ling Li;Ming Liu","doi":"10.1109/TED.2024.3435179","DOIUrl":null,"url":null,"abstract":"We report high-performance amorphous indium–gallium–zinc-oxide (a-IGZO) thin-film transistors (TFTs), in which both rectangular and circular architectures are utilized. In comparison to the commonly used rectangular design, the circular architecture is capable of significantly improving the device-to-device uniformity without obvious deterioration in transistor performance, and the ratio of standard deviation to mean value (variation coefficient) is only 1.29% for threshold voltage (\n<inline-formula> <tex-math>${V}_{\\text {TH}}$ </tex-math></inline-formula>\n), 1.12% for maximum width-normalized transconductance (\n<inline-formula> <tex-math>${G}_{\\text {m,max}}$ </tex-math></inline-formula>\n), and 0.93% for linear electron mobility (\n<inline-formula> <tex-math>$\\mu _{\\text {e}}$ </tex-math></inline-formula>\n), among the uniformity records for a-IGZO TFTs. Furthermore, simulations show a good agreement with experimental data and demonstrate that the improvement in device-to-device uniformity of circular architecture originates from the elimination of edge conduction paths compared to rectangular layout.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10623600","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10623600/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We report high-performance amorphous indium–gallium–zinc-oxide (a-IGZO) thin-film transistors (TFTs), in which both rectangular and circular architectures are utilized. In comparison to the commonly used rectangular design, the circular architecture is capable of significantly improving the device-to-device uniformity without obvious deterioration in transistor performance, and the ratio of standard deviation to mean value (variation coefficient) is only 1.29% for threshold voltage ( ${V}_{\text {TH}}$ ), 1.12% for maximum width-normalized transconductance ( ${G}_{\text {m,max}}$ ), and 0.93% for linear electron mobility ( $\mu _{\text {e}}$ ), among the uniformity records for a-IGZO TFTs. Furthermore, simulations show a good agreement with experimental data and demonstrate that the improvement in device-to-device uniformity of circular architecture originates from the elimination of edge conduction paths compared to rectangular layout.
实现非晶铟镓锌氧化物薄膜晶体管卓越均匀性的圆形结构
我们报告了采用矩形和圆形结构的高性能非晶铟镓锌氧化物(a-IGZO)薄膜晶体管(TFT)。与常用的矩形设计相比,圆形结构能够显著改善器件间的一致性,而不会明显降低晶体管的性能,其标准偏差与平均值之比(变异系数)仅为 1.在a-IGZO TFT的均匀性记录中,阈值电压(${V}_{text {TH}}$)为1.29%,最大宽度归一化跨导(${G}_{text {m,max}}$)为1.12%,线性电子迁移率($\mu _\text {e}}$)为0.93%。此外,模拟结果显示与实验数据非常吻合,并证明与矩形布局相比,圆形结构在器件间均匀性方面的改进源于消除了边缘传导路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信