Dual-Gate Carbon Nanotube Thin-Film Transistors With Printed Channel and Passivation Interlayer on Plastic Foil

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yongwoo Lee;Haksoon Jung;Youngmin Jo;Sanghoon Baek;Hyunjin Park;Seong Jun Park;Sungjune Jung;Yong-Young Noh;Jimin Kwon
{"title":"Dual-Gate Carbon Nanotube Thin-Film Transistors With Printed Channel and Passivation Interlayer on Plastic Foil","authors":"Yongwoo Lee;Haksoon Jung;Youngmin Jo;Sanghoon Baek;Hyunjin Park;Seong Jun Park;Sungjune Jung;Yong-Young Noh;Jimin Kwon","doi":"10.1109/LED.2024.3440484","DOIUrl":null,"url":null,"abstract":"This letter presents the fabrication process of carbon nanotube-based thin-film transistors (CNT-TFTs) with direct-printed CNT channels on flexible substrates and investigates the implications of dual-gating effects. Enhancing the electrical percolation of the nanotube network channel is achieved through a post-annealing process, which includes thermal treatment and solvent immersion. Introducing a thin polymer passivation layer enhances the device’s electrostatic characteristics, eliminating hysteresis. Compared to single-gate CNT-TFTs, the dual-gate configuration allows for full depletion operation. This results in a reduced subthreshold slope and an increased on/off current ratio. These findings offer valuable insights into leveraging dual-gating effects for developing printed CNT-TFT circuits, with potential applications in high-performance, low-power, large-area, and flexible electronic systems.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10630846/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents the fabrication process of carbon nanotube-based thin-film transistors (CNT-TFTs) with direct-printed CNT channels on flexible substrates and investigates the implications of dual-gating effects. Enhancing the electrical percolation of the nanotube network channel is achieved through a post-annealing process, which includes thermal treatment and solvent immersion. Introducing a thin polymer passivation layer enhances the device’s electrostatic characteristics, eliminating hysteresis. Compared to single-gate CNT-TFTs, the dual-gate configuration allows for full depletion operation. This results in a reduced subthreshold slope and an increased on/off current ratio. These findings offer valuable insights into leveraging dual-gating effects for developing printed CNT-TFT circuits, with potential applications in high-performance, low-power, large-area, and flexible electronic systems.
塑料薄膜上带有印刷通道和钝化夹层的双栅碳纳米管薄膜晶体管
这封信介绍了在柔性衬底上直接印刷碳纳米管通道的碳纳米管薄膜晶体管(CNT-TFT)的制造工艺,并研究了双栅效应的影响。通过包括热处理和溶剂浸泡在内的后退火工艺,增强了纳米管网络通道的电渗流。薄聚合物钝化层的引入增强了器件的静电特性,消除了滞后现象。与单栅极 CNT-TFT 相比,双栅极配置可实现完全耗尽操作。这就降低了亚阈值斜率,提高了导通/关断电流比。这些发现为利用双栅效应开发印刷型 CNT-TFT 电路提供了宝贵的见解,有望应用于高性能、低功耗、大面积和柔性电子系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信