Charles Gouert;Dimitris Mouris;Nektarios Georgios Tsoutsos
{"title":"Juliet: A Configurable Processor for Computing on Encrypted Data","authors":"Charles Gouert;Dimitris Mouris;Nektarios Georgios Tsoutsos","doi":"10.1109/TC.2024.3416752","DOIUrl":null,"url":null,"abstract":"Fully homomorphic encryption (FHE) has become progressively more viable in the years since its original inception in 2009. At the same time, leveraging state-of-the-art schemes in an efficient way for general computation remains prohibitively difficult for the average programmer. In this work, we introduce a new design for a fully homomorphic processor, dubbed Juliet, to enable faster operations on encrypted data using the state-of-the-art TFHE and cuFHE libraries for both CPU and GPU evaluation. To improve usability, we define an expressive assembly language and instruction set architecture (ISA) judiciously designed for end-to-end encrypted computation. We demonstrate Juliet's capabilities with a broad range of realistic benchmarks including cryptographic algorithms, such as the lightweight ciphers \n<sc>Simon</small>\n and \n<sc>Speck</small>\n, as well as logistic regression (LR) inference and matrix multiplication.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 9","pages":"2335-2349"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10564806/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Fully homomorphic encryption (FHE) has become progressively more viable in the years since its original inception in 2009. At the same time, leveraging state-of-the-art schemes in an efficient way for general computation remains prohibitively difficult for the average programmer. In this work, we introduce a new design for a fully homomorphic processor, dubbed Juliet, to enable faster operations on encrypted data using the state-of-the-art TFHE and cuFHE libraries for both CPU and GPU evaluation. To improve usability, we define an expressive assembly language and instruction set architecture (ISA) judiciously designed for end-to-end encrypted computation. We demonstrate Juliet's capabilities with a broad range of realistic benchmarks including cryptographic algorithms, such as the lightweight ciphers
Simon
and
Speck
, as well as logistic regression (LR) inference and matrix multiplication.
期刊介绍:
The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.