The Cognitive, Age, Functioning, and Apolipoprotein E4 (CAFE) Scorecard to Predict the Development of Alzheimer′s Disease: A White-Box Approach

Yumiko Wiranto, Devin R Setiawan, Amber Watts, Arian Ashourvan
{"title":"The Cognitive, Age, Functioning, and Apolipoprotein E4 (CAFE) Scorecard to Predict the Development of Alzheimer′s Disease: A White-Box Approach","authors":"Yumiko Wiranto, Devin R Setiawan, Amber Watts, Arian Ashourvan","doi":"10.1101/2024.08.02.24311399","DOIUrl":null,"url":null,"abstract":"Objective: This study aimed to bridge the gap between the costliness and complexity of diagnosing Alzheimer′s disease by developing a scoring system with interpretable machine learning to predict the risk of Alzheimer′s using obtainable variables to promote accessibility and early detection.\nParticipants and Methods: We analyzed 713 participants with normal cognition or mild cognitive impairment from the Alzheimer′s Disease Neuroimaging Initiative. We integrated cognitive test scores from various domains, informant-reported daily functioning, APOE genotype, and demographics to generate the scorecards using the FasterRisk algorithm.\nResults: Various combinations of 5 features were selected to generate ten scorecards with a test area under the curve ranging from 0.867 to 0.893. The best performance scorecard generated the following point assignments: age < 76 (-2 points); no APOE ϵ4 alleles (-3 points); Rey Auditory Verbal Learning Test <= 36 items (4 points); Logical Memory delayed recall <= 3 items (5 points); and Functional Assessment Questionnaire <= 2 (-5 points). The probable Alzheimer′s development risk was 4.3% for a score of -10, 31.5% for a score of -3, 50% for a score of -1, 76.3% for a score of 1, and greater than 95% for a score of > 6. Conclusions: Our findings highlight the potential of these interpretable scorecards to predict the likelihood of developing Alzheimer′s disease using obtainable information, allowing for applicability across diverse healthcare environments. While our initial scope centers on Alzheimer′s disease, the foundation we have established paves the way for similar methodologies to be applied to other types of dementia.\nKeywords: Alzheimer′s disease; Machine learning; Cognition; Apolipoprotein ϵ4","PeriodicalId":501025,"journal":{"name":"medRxiv - Geriatric Medicine","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Geriatric Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.02.24311399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to bridge the gap between the costliness and complexity of diagnosing Alzheimer′s disease by developing a scoring system with interpretable machine learning to predict the risk of Alzheimer′s using obtainable variables to promote accessibility and early detection. Participants and Methods: We analyzed 713 participants with normal cognition or mild cognitive impairment from the Alzheimer′s Disease Neuroimaging Initiative. We integrated cognitive test scores from various domains, informant-reported daily functioning, APOE genotype, and demographics to generate the scorecards using the FasterRisk algorithm. Results: Various combinations of 5 features were selected to generate ten scorecards with a test area under the curve ranging from 0.867 to 0.893. The best performance scorecard generated the following point assignments: age < 76 (-2 points); no APOE ϵ4 alleles (-3 points); Rey Auditory Verbal Learning Test <= 36 items (4 points); Logical Memory delayed recall <= 3 items (5 points); and Functional Assessment Questionnaire <= 2 (-5 points). The probable Alzheimer′s development risk was 4.3% for a score of -10, 31.5% for a score of -3, 50% for a score of -1, 76.3% for a score of 1, and greater than 95% for a score of > 6. Conclusions: Our findings highlight the potential of these interpretable scorecards to predict the likelihood of developing Alzheimer′s disease using obtainable information, allowing for applicability across diverse healthcare environments. While our initial scope centers on Alzheimer′s disease, the foundation we have established paves the way for similar methodologies to be applied to other types of dementia. Keywords: Alzheimer′s disease; Machine learning; Cognition; Apolipoprotein ϵ4
预测阿尔茨海默病发展的认知、年龄、功能和载脂蛋白 E4 (CAFE) 计分卡:白盒疗法
研究目的本研究旨在弥合阿尔茨海默病诊断的成本和复杂性之间的差距,通过开发一种可解释的机器学习评分系统,利用可获得的变量预测阿尔茨海默病的风险,以促进可及性和早期检测:我们分析了阿尔茨海默病神经影像学倡议(Alzheimer′s Disease Neuroimaging Initiative)中认知正常或轻度认知障碍的 713 名参与者。我们整合了不同领域的认知测试得分、线人报告的日常功能、APOE 基因型和人口统计学特征,使用 FasterRisk 算法生成记分卡:我们选择了 5 个特征的不同组合,生成了 10 张记分卡,其测试曲线下面积从 0.867 到 0.893 不等。表现最佳的记分卡产生了以下分值分配:年龄< 76(-2分);无APOE ϵ4等位基因(-3分);Rey听觉言语学习测试<= 36个项目(4分);逻辑记忆延迟回忆<= 3个项目(5分);功能评估问卷<= 2(-5分)。阿尔茨海默氏症的可能发展风险为:-10 分为 4.3%,-3 分为 31.5%,-1 分为 50%,1 分为 76.3%,6 分为超过 95%:我们的研究结果凸显了这些可解释记分卡的潜力,可利用可获得的信息预测罹患阿尔茨海默病的可能性,适用于不同的医疗保健环境。虽然我们最初的研究范围以阿尔茨海默病为中心,但我们建立的基础为类似方法应用于其他类型的痴呆症铺平了道路:阿尔茨海默病;机器学习;认知;载脂蛋白ϵ4
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信