{"title":"Investigation of Nitrogen-Based Plasma Passivation on GaN RF HEMTs Using Various Precursors","authors":"Qiaoyu Hu;Wei-Chih Cheng;Xiguang Chen;Chenkai Deng;Lina Liao;Wenmao Li;Yang Jiang;Jiaqi He;Yi Zhang;Chuying Tang;Peiran Wang;Kangyao Wen;Fangzhou Du;Yifan Cui;Mujun Li;Wenyue Yu;Robert Sokolovskij;Nick Tao;Qing Wang;Hongyu Yu","doi":"10.1109/JEDS.2024.3412186","DOIUrl":null,"url":null,"abstract":"This study investigates the DC and RF performance of RF GaN High Electron Mobility Transistors (HEMTs) subjected to surface pretreatments by N\n<sub>2</sub>\n and N\n<sub>2</sub>\nO plasma. The filling of nitrogen vacancies or the passivation effect introduced by the thin GaON layer result in enhanced DC characteristics and RF performance for devices treated with nitrogen-based plasma. Compared to the untreated device, the device treated with N\n<sub>2</sub>\n plasma exhibited a significant improvement in performance, i.e., the saturated current increased by approximately 16%, the characteristic frequency (f\n<sub>T</sub>\n) had an increase of 27.6 GHz, the maximum oscillating frequency (f\n<sub>max</sub>\n) increased by 60.4 GHz. Furthermore, the breakdown voltage had a 10.7% increase, and the dynamic/static on-resistance ratio decreased from 1.34 to 1.18. These results highlight the potential of nitrogen-based plasma treatments in improving the performance of RF GaN HEMTs.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"875-880"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552704","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10552704/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the DC and RF performance of RF GaN High Electron Mobility Transistors (HEMTs) subjected to surface pretreatments by N
2
and N
2
O plasma. The filling of nitrogen vacancies or the passivation effect introduced by the thin GaON layer result in enhanced DC characteristics and RF performance for devices treated with nitrogen-based plasma. Compared to the untreated device, the device treated with N
2
plasma exhibited a significant improvement in performance, i.e., the saturated current increased by approximately 16%, the characteristic frequency (f
T
) had an increase of 27.6 GHz, the maximum oscillating frequency (f
max
) increased by 60.4 GHz. Furthermore, the breakdown voltage had a 10.7% increase, and the dynamic/static on-resistance ratio decreased from 1.34 to 1.18. These results highlight the potential of nitrogen-based plasma treatments in improving the performance of RF GaN HEMTs.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.